refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 61 results
Sort by

Filters

Technology

Platform

accession-icon GSE47345
Gene expression profiling to recognize specific features of (non-) genotoxic carcinogens
  • organism-icon Mus musculus
  • sample-icon 88 Downloadable Samples
  • Technology Badge Icon Affymetrix HT MG-430 PM Array Plate (htmg430pm)

Description

The current test strategy for carcinogenicity is generally based on in vitro and in vivo genotoxicity assays. Non-genotoxic carcinogens (NGTXC) are negative for genotoxicity and go undetected. Therefore, alternative tests to detect these chemicals are urgently needed. NGTXC act through different modes of action, which complicates the development of such assays. We have demonstrated recently in primary mouse hepatocytes that some, but certainly not all, NGTXC can be categorized according to their mode of action based on feature detection at a gene expression level (Schaap et al. 2012, PMID22710402). Identification of a wider range of chemicals probably requires multiple in vitro systems. In the current study we describe the added value of using mouse embryonic stem cells. In this study the focus is on NGTXC, but we also included genotoxic carcinogens and non-carcinogens. This approach enables us to assess the robustness of this method and to evaluate the system for recognizing features of chemicals in general, which is important for application in future risk assessment.

Publication Title

A novel toxicogenomics-based approach to categorize (non-)genotoxic carcinogens.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54257
Drug-induced liver injury
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE54254
Expression data from human hepatocellular carcinoma cell line HepG2
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Drug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor (TNF) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and Nrf2 antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ~80 DILI compounds in primary human hepatocytes. The ER stress was primarily related to PERK and ATF4 activation and subsequent expression of CHOP, which was all independent of TNF signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies revealed that while ER stress signaling through IRE1 and ATF6 acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNF cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing towards caspase-8-dependent TNF induced apoptosis.

Publication Title

Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE54256
Expression data from primary mouse hepatocytes treated with Diclofenac
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Drug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor (TNF) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and Nrf2 antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ~80 DILI compounds in primary human hepatocytes. The ER stress was primarily related to PERK and ATF4 activation and subsequent expression of CHOP, which was all independent of TNF signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies revealed that while ER stress signaling through IRE1 and ATF6 acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNF cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing towards caspase-8-dependent TNF induced apoptosis.

Publication Title

Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE54255
Gene expression data from precision cut human liver slices treated to diclofenac
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Drug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor (TNF) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and Nrf2 antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ~80 DILI compounds in primary human hepatocytes. The ER stress was primarily related to PERK and ATF4 activation and subsequent expression of CHOP, which was all independent of TNF signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies revealed that while ER stress signaling through IRE1 and ATF6 acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNF cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing towards caspase-8-dependent TNF induced apoptosis.

Publication Title

Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE114515
Post-slippage cells increase expression of factors associated with SASP.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Human transcriptome analysis of U2OS cells treated with nocodazole or DMSO (Control).

Publication Title

Autophagy Governs Protumorigenic Effects of Mitotic Slippage-induced Senescence.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP072759
ZMYND8 co-localizes with NuRD on target genes and regulates recruitment of GATAD2A/NuRD to sites of DNA damage [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The NuRD complex is generally thought to repress transcription at both hyper- and hypomethylated regions in the genome. In addition, the complex is involved in the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The ZMYND8 MYND domain directly interacts with PPPL? motifs in the NuRD subunit GATAD2A. Furthermore, GATAD2A and GATAD2B exclusively form homodimers and they thus define mutually exclusive NuRD subcomplexes. ZMYND8 and MBD3 share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and expression of NuRD/ZMYND8 target genes in steady-state asynchronous cells. However, ZMYND8 facilitates immediate recruitment of GATAD2A/NuRD to induced sites of DNA damage. These results thus show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to a distinct NuRD subcomplex. Overall design: RNA-seq samples for HeLa FRT-TO mock, ZMYND8KO, and ZMYND8KO-rescue cells

Publication Title

ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE87125
Effects of starter microbiota and early life feeding of medium chain triglycerides on the gastric transcriptome profile of 3 weeks old caesarean derived pigs
  • organism-icon Sus scrofa
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Porcine Gene 1.1 ST Array (porgene11st)

Description

An early settlement of a complex gut microbiota can protect against gastro-intestinal dysbiosis, but the effects of neonatal microbiota colonization and early life feeding of medium chain triglycerides on the maturation of the porcine gastric mucosa are largely unknown.

Publication Title

The effects of starter microbiota and the early life feeding of medium chain triglycerides on the gastric transcriptome profile of 2- or 3-week-old cesarean delivered piglets.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE87124
Effects of starter microbiota on the gastric transcriptome profile of 2 weeks old caesarean derived pigs
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Porcine Gene 1.1 ST Array (porgene11st)

Description

An early settlement of a complex gut microbiota can protect against gastro-intestinal dysbiosis, but the effects of neonatal microbiota colonization on the maturation of the porcine gastric mucosa are largely unknown.

Publication Title

The effects of starter microbiota and the early life feeding of medium chain triglycerides on the gastric transcriptome profile of 2- or 3-week-old cesarean delivered piglets.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-1934
Transcription profiling by array of Arabidopsis plants treated either with mock or menadione sodium bisulphite and sampled after 3, 6 and 24 hours
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis plants were treated either with mock or MSB (0.2 mM of Menadione sodium bisulphite). <br></br>Tissue was sampled after 3, 6 and 24 hours.

Publication Title

Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis.

Sample Metadata Fields

Age, Specimen part, Compound, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact