refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 88 results
Sort by

Filters

Technology

Platform

accession-icon SRP006729
Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L (mRNA-Seq data)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

TORC1 is a structurally and functionally conserved multiprotein complex that regulates many aspects of eukaryote growth including the synthesis and assembly of ribosomes. The protein kinase activity of this complex is responsive to environmental cues and is potently inhibited by the natural product macrolide rapamycin. Insights into how TORC1 regulates growth have been provided with the recent identification of the rapamycin-sensitive phosphoproteome in yeast. Building on these data, we show here that Sch9, an AGC family kinase and direct substrate of TORC1, promotes ribosome biogenesis (ribi) and ribosomal protein (RP) gene expression via direct inhibitory phosphorylation of three transcription repressors, Stb3, Dot6 and Tod6. Dephosphorylation of these factors allows them to recruit the RPD3L histone deactelyase complex to ribi/RP gene promoters. Since rRNA and tRNA transcription are also under its control, Sch9 appears to be well positioned to coordinately regulate transcriptional aspects of ribosome biogenesis. Overall design: mRNA-Seq of 8 S. cerevisiae strains treated with either DMSO alone or 1NM-PP1, a small molecule inhibitor for analog-sensitive kinases such as sch9-as.

Publication Title

Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon E-TABM-544
Transcription profiling of yeast mutants to determine gene regulation by sterol and sphingolipid composition
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

determination of gene regulation by sterol and sphingolipid composition

Publication Title

Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP028887
Differential Protein Occupancy Profiling of the mRNA Transcriptome
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500, IlluminaHiSeq2000

Description

Protein-RNA interactions are fundamental to core biological processes, such as mRNA splicing, localization, degradation and translation. We have developed a photoreactive nucleotide-enhanced UV crosslinking and oligo(dT) purification approach to identify the mRNA-bound proteome using quantitative proteomics and to display the protein occupancy on mRNA transcripts by next-generation sequencing (Baltz and Munschauer et al. 2012). Our current work focuses on streamlining and extending protein occupancy profiling on poly(A)-RNA. Our objectives are to identify previously unknown protein-bound transcripts and, more importantly, to assess global and local differences in protein occupancy across different biological conditions. To this end, we have implemented poppi, the first pipeline for differential analysis of protein occupancy profiles. We have applied our analysis pipeline to pinpoint changes in occupancy profiles of MCF7 cells against already published HEK293 cells [GSE38157]. Overall design: We generated protein occupancy cDNA libraries for two biological replicates. Briefly, we crosslinked 4SU-labeled MCF7 cells and purified protein-mRNA complexes using oligo(dT)-beads. The precipitate was treated with RNAse I to reduce the protein-crosslinked RNA fragments to a length of about 30-60 nt. To remove non-crosslinked RNA, protein-RNA complexes were precipitated with ammonium sulfate and blotted onto nitrocellulose. The RNA was recovered by Proteinase K treatment, ligated to cloning adapters, and reverse transcribed. The resulting cDNA libraries were PCR-amplified and next-generation sequenced.

Publication Title

Differential protein occupancy profiling of the mRNA transcriptome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP115152
Dynamic networks of lymphatic vessels interconnect nodes of neighboring hair follicles across the skin
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Dermal lymphatics form a network that connects all the hair follicles in skin and localize in proximity to the Hair Follicle Stem Cell. RNA sequencing analyses of isolated dermal lymphatics at two different time points of the hair follicle cycle (P55 and P70) indicate the existence of dynamic signaling networks associated with lymphatic remodeling, immune trafficking, and HF signaling. Overall design: Prox1CreERT2; ROSA26-LSL-eYFP mice of P55 (Mid Telogen) and P70 (Late telogen) were sacrificed and eYFP positive cells were isolated from the backskin.

Publication Title

Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration in vivo.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon SRP111478
The impact of CXCL5 overexpression on the primary tumor microenvironment of B16F1 melanomas
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

CXCL5, a strong neutrophil-chemoattractant, has been reportet to be expressed in different cancer entities with diverse outcomes in disease progression. Contradictory outcome in disease progression in different tumor entities might be explained by a tumor type specific expression pattern of chemokines, chemokine receptors and growth factors that act in concert with CXCL5. This study evaluates the impact of CXCL5 expression on the tumor mircoenvironment in a syngeneic mouse melanoma model. Overall design: 105 B16F1 and B16F1-CXCL5 murine melanoma were injected intradermally into the flank skin of C57BL/6 J mice. Primary tumors were grown up to 250-350mm³, excised, snap frozen and then processed for RNA sequencing.

Publication Title

CXCL5 as Regulator of Neutrophil Function in Cutaneous Melanoma.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP047422
In vitro differentiation of human low threshold mechanoreceptive (LTMR) neurons from embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Human embryonic stem cells were differentiated into peripheral sensory neurons via the intermediate generation of neural crest like cell (NCC). Using various markers we identified these cells as LTMR. We then analyzed there complete transcriptional profile in comparison to the intermediate neural crest like cells. Overall design: mRNA expression data of human ESC-derived sensory neuron clusters (10-20 cells) and human ESC-derived neural crest like cells (~100 cells) was generated by illumina deep sequencing

Publication Title

PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26656
Gene expression profiles of Wnt-1 overexpressing melanoma
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We aimed to analyze the effects of Wnt-1 overexpression on the mRNA expression profile of human melanoma in a mouse xenograft model and correlated the results with then presence or absence of lymphangiogenesis and metastasis. Affymetrix gene expression analysis revealed activation of canonical and non-canonical targets genes in response to Wnt-1 as compared with controls. In regard to lymphangiogenic factors, the amount of VEGF-C was the single best marker to correlate with the amount of lymph-angiogenesis.

Publication Title

Wnt1 is anti-lymphangiogenic in a melanoma mouse model.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE6558
Differential expression in selected adult female Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

A study evaluating the effect of stress resistance selection of Drosophila melanogaster.

Publication Title

Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16765
Transcriptomic and phenotypic variation for salt stress response in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcriptional variation, also called expression level polymorphism (ELP), contributes to intra-specific phenotypic variation in many organisms. Differentially expressed transcripts are typically enriched for stress-related genes, suggesting that differences in response to the environment are a particularly common point of divergence among gentoypes. Analysis of ELPs also has been suggested as a way to assess unintended consequences of transgene introduction; however, it is important that interpretation of transcriptional changes be performed within the context of potential fitness effects. In these studies we sought to examine differential gene expression in response to salinity for two widely used Arabidopsis thaliana ecotypes, Wassilewskija (Ws) and Columbia (Col), and a single gene mutation (glabrous, gl1-1) in the Col background (Col(gl)), in relation to genetic, phenotypic, and fitness differences.

Publication Title

Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE18217
Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Mannitol is a putative osmoprotectant contributing to salt tolerance in several species. Arabidopsis plants transformed with the mannose-6-phosphate reductase (M6PR) gene from celery were dramatically more salt tolerant (at 100mM NaCl) as exhibited by reduced salt injury, less inhibition of vegetative growth, and increased seed production relative to the wild type (WT). When treated with 200mM NaCl, transformants produced no seeds, but did bolt, and exhibited less chlorosis/necrosis and greater survival and dry weights than the WT. Without salt there were no M6PR effects on growth or phenotype, but expression levels of 2272 genes were altered. Many fewer differences (1039) were observed between M6PR and WT plants in the presence of salt, suggesting that M6PR pre-conditioned the plants to stress. Previous work suggested that mannitol is an osmoprotectant, but mannitol levels are invariably quite low, perhaps inadequate for osmoprotectant effects. In this study, transcriptome analysis reveals that the M6PR transgene activated the downstream abscisic acid (ABA) pathway by up-regulation of ABA receptor genes (PYL4, PYL5, and PYL6) and down-regulation of protein phosphatase 2C genes (ABI1 and ABI2). In the M6PR transgenic lines there were also increases in transcripts related to redox and cell wall-strengthening pathways. These data indicate that mannitol-enhanced stress tolerance is due at least in part to increased expression of a variety of stress-inducible genes.

Publication Title

Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact