refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 77 results
Sort by

Filters

Technology

Platform

accession-icon SRP043043
Global analysis of ZNF217 chromatin occupancy in the breast cancer cell genome reveals an association with Eralpha
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Background: The ZNF217 gene, encoding a C2H2 zinc finger protein, is located at 20q13 and found amplified and overexpressed in greater than 20% of breast tumors. Current studies indicate ZNF217 drives tumorigenesis, yet the regulatory mechanisms of ZNF217 are largely unknown. Because ZNF217 associates with chromatin modifying enzymes, we postulate that ZNF217 functions to regulate specific gene signaling networks. Here, we present a large-scale functional genomic analysis of ZNF217, which provides insights into the regulatory role of ZNF217 in MCF7 breast cancer cells. Results: ChIP-seq analysis reveals that the majority of ZNF217 binding sites are located at distal regulatory regions associated with the chromatin marks H3K27ac and H3K4me1. Analysis of ChIPseq transcription factor binding sites shows clustering of ZNF217 with FOXA1, GATA3 and ERalpha binding sites, supported by the enrichment of corresponding motifs for the ERalpha-associated cisregulatory sequences. ERalpha expression highly correlates with ZNF217 in lysates from breast tumors (n=15), and ERalpha co-precipitates ZNF217 and its binding partner CtBP2 from nuclear extracts. Transcriptome profiling following ZNF217 depletion identifies differentially expressed genes co-bound by ZNF217 and ERalpha; gene ontology suggests a role for ZNF217-ERalpha in expression programs associated with ER+ breast cancer studies found in the Molecular Signature Database. Data-mining of expression data from breast cancer patients correlates ZNF217 with reduced overall survival in multiple subtypes. Conclusions: Our genome-wide ZNF217 data suggests a functional role for ZNF217 at ERalpha target genes. Future studies will investigate whether ZNF217 expression contributes to aberrant ERalpha regulatory events in ER+ breast cancer and hormone resistance Overall design: Differential RNA-seq profiling from triplicate biological replicates of MCF7 cells treated with scrambled siRNA or siZNF217.

Publication Title

Global analysis of ZNF217 chromatin occupancy in the breast cancer cell genome reveals an association with ERalpha.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20484
CXCL4 induces a unique transcriptome in monocyte-derived macrophages
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human blood monocytes were differentiated over six days with either 100 ng/ml M-CSF or 1 umol/l CXCL4

Publication Title

CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17218
Encyclopedia of the expression levels of all genes in multiple components of the developing kidney
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE17139
Gene expression profiles of cap mesenchyme and renal vesicle isolated between P0-P4 from Crym-EGFP neonatal transgenic mice using FACS. (GUDMAP Series ID: 28)
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE17138
Gene expression profiles of renin producing cells in newborn and adult kidney isolated from Renin-YFP transgenic mice using FACS. (GUDMAP Series ID: 29)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE17142
Gene expression profiles of adult visceral epithelium (syn: podocyte layer) isolated from MafB-GFP transgenic mice using FACS. (GUDMAP Series ID: 31)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE17143
Gene expression profiles of E13.5 developing podocyte in the developing kidney isolated from MafB-GFP transgenic mice using FACS on 1.0 ST Array chip. (GUDMAP Series ID: 32)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE17145
Gene expression profiles of E15.5 developing podocytes in the developing kidney isolated from MafB-GFP transgenic mice using FACS on 1.0 ST Array chip. (GUDMAP Series ID: 33)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE17141
Gene expression profiles of adult renal corpusle isolated using sieving techniques. (GUDMAP Series ID: 30)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The use of microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE73955
Comparison of Gene expression profiling of granulosa cells treated with follicle stimulating hormone or constitutively active protein kinase A
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

PKA activation by FSH is essential to transduce FSH-mediated effects on granulosa cell proliferation, differentiation and steroidogenesis. However, It is unknown whether activation of PKA is sufficient to account for the entire program of granulosa cell responses to FSH. We addressed this question by conducting a comprehensive comparative analysis of signaling pathways and gene expression profiles of granulosa cells stimulated with FSH or expressing a constitutively active PKA mutant, PKA-CQR.

Publication Title

Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact