refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 379 results
Sort by

Filters

Technology

Platform

accession-icon SRP055142
Response of liver-expressed genes (including lincRNAs) to continuous growth hormone (GH) infusion
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Gene expression in livers of adult male mice subjected to continuous GH infusion using Alzet osmotic minipumps for 1, 4 or 7 days was assayed by RNA-seq, as part of a study of growth hormone regulation of hepatic lincRNAs (PMID:26459762) and protein-coding genes (PMID:28694329). Overall design: RNA isolated from livers obtained from untreated male mice, or from male mice subjected to continuous GH tratment for 1, 4 or 7 days were prepared and used for unstranded RNA-seq.

Publication Title

Feminization of Male Mouse Liver by Persistent Growth Hormone Stimulation: Activation of Sex-Biased Transcriptional Networks and Dynamic Changes in Chromatin States.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP106531
Gene expression profiling of continuous growth hormone infused (cGH) adult male mouse liver by RNA-seq analysis of rRNA-depleted liver RNA. [G137_G138]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

rRNA-depleted RNA isolated from livers of intact male and female mice and from male mice treated with a continuous infusion of growth hormone for either 10 hr or 1 days was analyzed by RNA-seq Overall design: Liver RNA was isolated from 8 week old male mice treated with a continuous GH infusion (cGH) for either 10 hours or 1 day. Sham pump males served as a control. RNA-seq data are compared to untreated adult females to identify genes that show sex differences in liver expression and also respond to cGH. RNA samples were pooled to make 3 biological replicates per condition comprised of 2-4 individuals each.

Publication Title

Feminization of Male Mouse Liver by Persistent Growth Hormone Stimulation: Activation of Sex-Biased Transcriptional Networks and Dynamic Changes in Chromatin States.

Sample Metadata Fields

Sex, Age, Cell line, Treatment, Subject

View Samples
accession-icon SRP096365
Gene expression profiling (RNA-seq with partial depletion of rRNA) of livers of hypophysectomized male mice treated with a single pulse of growth hormone (GH)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We investigated the effects of a single pulse of growth hormone on the transcriptional activation of STAT5 target genes in hypophysectomized male mouse liver. This GEO series is part of a larger study, where we investigated the impact of a single pulse of GH given to hypophysectomized mice on local liver chromatin accessibility [DNase hypersensitive site analysis], transcription rates [hnRNA analysis], and gene expression [quantitative PCR and RNA-Seq] determined 30, 90 or 240 min later. The STAT5-dependent but sex-independent early GH response genes Igf1 and Cish showed rapid, GH pulse-induced increases in chromatin accessibility and gene transcription, reversing the effects of hypophysectomy. Rapid increases in liver chromatin accessibility and transcriptional activity were also induced in hypophysectomized male mice for some (Ces2b, Ugt2b38) but not for other liver STAT5-dependent male-biased genes (Cyp7b1). Moreover, in pituitary-intact male mice, Igf1, Cish, Ces2b and Ugt2b38 all showed remarkable cycles of chromatin opening and closing, and associated cycles of induced gene transcription, which closely followed each endogenous pulse of liver STAT5 activity. Thus, the endogenous rhythms of male plasma GH pulsation dynamically open and then close liver chromatin at discrete, localized regulatory sites in temporal association with transcriptional activation of Igf1, Cish and a subset of STAT5-dependent male-biased genes. Overall design: Liver RNA was isolated from hypophysectomized male mice that were untreated, or were treated with a single pulse of GH and euthanized 30, 90 or 240 minutes later. 8 Individual RNA samples were pooled to make 2 biological replicates per condition for RNA-seq analysis.

Publication Title

Activation of Male Liver Chromatin Accessibility and STAT5-Dependent Gene Transcription by Plasma Growth Hormone Pulses.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP096363
Gene expression profile (RNA-seq) of hypophysectomized male mouse liver treated with a single pulse of growth hormone (GH)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We investigated the effects of a single pulse of growth hormone on the transcriptional activation of STAT5 target genes in hypophysectomized male mouse liver. This GEO series is part of a larger study, where we investigated the impact of a single pulse of GH given to hypophysectomized mice on local liver chromatin accessibility [DNase hypersensitive site analysis], transcription rates [hnRNA analysis], and gene expression [quantitative PCR and RNA-Seq] determined 30, 90 or 240 min later. The STAT5-dependent but sex-independent early GH response genes Igf1 and Cish showed rapid, GH pulse-induced increases in chromatin accessibility and gene transcription, reversing the effects of hypophysectomy. Rapid increases in liver chromatin accessibility and transcriptional activity were also induced in hypophysectomized male mice for some (Ces2b, Ugt2b38) but not for other liver STAT5-dependent male-biased genes (Cyp7b1). Moreover, in pituitary-intact male mice, Igf1, Cish, Ces2b and Ugt2b38 all showed remarkable cycles of chromatin opening and closing, and associated cycles of induced gene transcription, which closely followed each endogenous pulse of liver STAT5 activity. Thus, the endogenous rhythms of male plasma GH pulsation dynamically open and then close liver chromatin at discrete, localized regulatory sites in temporal association with transcriptional activation of Igf1, Cish and a subset of STAT5-dependent male-biased genes. Overall design: Liver RNA was isolated from untreated hypophysectomized male mice and from hypophysectomized male mice treated with a single pulse of GH and euthanized 30, 90 or 240 minutes later. 8 Individual RNA samples were pooled to make 2 biological replicates per condition for RNA-seq analysis.

Publication Title

Activation of Male Liver Chromatin Accessibility and STAT5-Dependent Gene Transcription by Plasma Growth Hormone Pulses.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE14328
Three non-invasive protein biomarkers for solid-organ transplant rejection found through integrative genomics
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We integrated three transplant rejection microarray studies examining gene expression in samples from pediatric renal, adult renal, and adult heart transplants. We performed one study ourselves and retrieved two others from the NCBI Gene Expression Omnibus (GEO)(GSE4470 and GSE1563). We identified 45 genes that were upregulated in common in acute rejection. Half were involved in one immune-related pathway. Among ten proteins we tested by serum ELISA, three successfully distinguished acute rejection from stable transplants. These were CXCL9, PECAM1, and CD44, with areas under the receiver operating characteristic curves of 0.844, 0.802, and 0.738, respectively. Immunohistochemistry showed that the PECAM1 protein was increased in acute rejection in renal, liver and heart transplants versus normal tissues. Our results show that integrating publicly-available gene expression data sets is a fast, powerful, and cost-effective way to identify serum-detectable diagnostic biomarkers.

Publication Title

Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37552
A Systems Biology Approach Reveals Common Metastatic Pathways in Osteosarcoma
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background

Publication Title

A systems biology approach reveals common metastatic pathways in osteosarcoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE41856
Cell growth in aggregates determines gene expression, proliferation, survival and chemoresistance of Follicular Lymphoma
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41855
Expression data from quiescent cells and cycling cells isolated from Multicellular aggregates of lymphoma cells (MALC)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Follicular Lymphomas are blood tumors growing as spheres in patients. Before this study, there was no experimental model mimicking the 3D organization of these in vivo tumors. We develop such a model, called MALC, and observed a progressive enrichment in quiescent cells in these with time of culture; these cells were sorted, as their cycling counterparts, and their transcriptomes were compared. We used microarrays to detail the differential global gene expression profile between quiescent and cycling cells isolated from MALC.

Publication Title

Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41851
Expression data from follicular lymphoma cells cultured either in suspension either as Multicellular aggregates of lymphoma cells (MALC)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Follicular Lymphomas are blood tumors growing as spheres in patients. Before this study, there was no experimental model mimicking the 3D organization of these in vivo tumors. We develop such a model, called MALC, and performed a pan-genomic comparative analysis between MALC and classical suspension cultures. We used microarrays to detail the global gene expression profile induced by aggregated growth of lymphoma cells.

Publication Title

Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26980
Expression data from melanoma cells grown under neural crest cell culture conditions (spheroid cells) versus under classical adherent conditions (adherent cells) - 2 different specimens of melanoma tumors
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Summary: Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function

Publication Title

Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact