refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 758 results
Sort by

Filters

Technology

Platform

accession-icon GSE42358
Transcriptome analysis of CD16/CD62L neutrophil subsets during human experimental endotoxemia
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

During systemic inflammation, different neutrophil subsets are mobilized to the blood circulation. These neutrophil subsets can be distinguished from normal circulating neutrophils (CD16bright/CD62Lbright) based on either an immature CD16dim/CD62Lbright or a CD16bright/CD62Ldim phenotype. Interestingly, the latter neutrophil subset is known to suppress lymphocyte proliferation ex vivo, but the underlying mechanism is largely unknown.

Publication Title

IFN-γ-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE7253
Puberty and Diabetes in the Kidney
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Puberty unmasks or accelerates nephropathies, including the nephropathy of diabetes mellitus (DM). A number of cellular systems implicated in the kidney disease of DM interweave, forming an interdependent functional web. We performed focused microarray analysis to test the hypothesis that one or more genes in the transforming growth factor beta (TGF-) signaling system would be differentially regulated in male rats depending on the age of onset of DM.

Publication Title

Prepubertal onset of diabetes prevents expression of renal cortical connective tissue growth factor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46871
Hippocampal gene expression profiling of a model of Alzheimer`s Disease upon treatment with the ACE inhibitor captopril
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Extracellular senile plaques of amyloid beta (Abeta) are a pathological hallmark in brain of patients with Alzheimer`s Disease (AD). Abeta is generated by the amyloidogenic processing of the amyloid precursor protein (APP). Concomitant to Abeta load, AD brain is characterized by an increase in protein level and activity of the angiotensin-converting enzyme (ACE). ACE inhibitors are a widely used class of drugs with established benefits for patients with cardiovascular disease. However, the role of ACE and ACE inhibition in the development of Abeta plaques and the process of AD-related neurodegeneration is not clear since ACE was reported to degrade Abeta. To investigate the effect of ACE inhibition on AD-related pathomechanisms, we used Tg2576 mice with neuron-specific expression of APPSwe as AD model. From 12 months of age, substantial Abeta plaque load accumulates in the hippocampus of Tg2576 mice as a brain region, which is highly vulnerable to AD-related neurodegeneration. The effect of central ACE inhibition was studied by treatment of 12 month-old Tg2576 mice for six months with the brain penetrating ACE inhibitor captopril. At an age of 18 months, hippocampal gene expression profiling was performed of captopril-treated Tg2576 mice relative to untreated 18 month-old Tg2576 controls with high Abeta plaque load. As an additional control, we used 12 month-old Tg2576 mice with low Abeta plaque load. Whole genome microarray gene expression profiling revealed gene expression changes induced by the brain-penetrating ACE inhibitor captopril, which could reflect the neuro-regenerative potential of central ACE inhibition.

Publication Title

ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer's disease.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE48839
Genome-wide transcript profiling for native porcine valvular interstitial cells and those cultured on TCPS and treated with TGF-1
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Fibrotic diseases have significant health impact and have been associated with differentiation of the resident fibroblasts into myofibroblasts. In particular, stiffened extracellular matrix and TGF-1 in fibrotic lesions have been shown to promote pathogenic myofibroblast activation and progression of fibrosis in various tissues. To better understand the roles of mechanical and chemical cues on myofibroblast differentiation and how they may crosstalk, we cultured primary valvular interstitial cells (VICs) isolated from porcine aortic valves and studied how traditional TCPS culture, which presents a non-physiologically stiff environment, and TGF-1 affect native VIC phenotypes.

Publication Title

Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE15575
Expression data from human embryonic kidney cells (HEK293) cultivated in high and low glucose
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiling of human embryonic kidney (HEK293) cells was performed to determine the effect of high and low glucose on gene expression. Microarrays were used to identify distinct classes of genes up-regulated in HEK293 cells during cultivation for 7 days in medium with physiological (low) glucose compared to high glucose.

Publication Title

Calreticulin enhances B2 bradykinin receptor maturation and heterodimerization.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE26524
Expression data from differentiating Flk1- and Flk1+ ES cells expressing Snail during Wnt inhibition
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

ES cells differentiated in the presence of the Wnt inhibitor DKK1 fail to express the transcription factor Snail and undergo EMT or mesoderm differentiation. We generated an ES cell line, A2.snail, that induced Snail expression upon addition of doxycycline addition.

Publication Title

Snail promotes the cell-autonomous generation of Flk1(+) endothelial cells through the repression of the microRNA-200 family.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE53769
Molecular regulation of acute kidney injury (mRNA)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Multispecies miRNA-3 Array (mirna3)

Description

18 zero-hour and 18 selected post-transplant (Tx) biopsy samples from 18 kidney allografts (8 acute kidney injury (AKI), 10 PBx - protocol biopsies - controls) were analyzed by using the Affymetrix GeneChip Human Gene 2.0 ST Array.

Publication Title

Molecular biomarker candidates of acute kidney injury in zero-hour renal transplant needle biopsies.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34583
Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34541
Identification of gene targets of Meis2
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Meis2, another member of the same family, shares 82% protein identities with Meis1. Our present study suggested Meis2 exerts two distinguishable effects in differentiating ES cells. First, it increases the numbers of hematopoietic progenitors and extends their persistence in culture. Second, Meis2 skews hematopoietic differentiation by suppressing erythroid while enhancing megakaryocytic progenitor differentiation. To identify the underlying transcriptional bases of these actions, we carried out microarray analysis to compare the various populations of cells developing in ES differentiation cultures in the presence and absence of Meis2 induction.

Publication Title

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34543
Identification of gene targets of Meis1
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Our present study suggested it exerts two distinguishable effects in differentiating ES cells. First, it increases the numbers of hematopoietic progenitors and extends their persistence in culture. Second, Meis1 skews hematopoietic differentiation by suppressing erythroid while enhancing megakaryocytic progenitor differentiation. To identify the underlying transcriptional bases of these actions, we carried out microarray analysis to compare the various populations of cells developing in ES differentiation cultures in the presence and absence of Meis1 induction.

Publication Title

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact