refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 116 results
Sort by

Filters

Technology

Platform

accession-icon GSE69391
Expression data from young and old healthy humans, as well as HGPS patients
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

HGPS is a rare premature ageing disease, caused by a mutation in the LMNA gene, which activates a cryptic splice site, resulting in the production of a mutant lamin A isoform, called progerin. Sporadic usage of the same cryptic splice site has been observed with normal physiological aging. As it is unknown how HGPS causes premature ageing defects, we set out to determine the gene signature of both young healthy individuals, old healthy individuals, as well as HGPS patients.

Publication Title

Repression of the Antioxidant NRF2 Pathway in Premature Aging.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE4286
Making a predictive heart failure expression profile in Ren2 rat left ventricles
  • organism-icon Rattus norvegicus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The intercalated disc of cardiac myocytes is emerging as a crucial structure in the heart. Loss of intercalated disc proteins like N-cadherin causes lethal cardiac abnormalities, mutations in intercalated disc proteins cause human cardiomyopathy. A comprehensive screen for novel mechanisms in failing hearts demonstrated that expression of the lysosomal integral membrane protein-2 (LIMP-2) is increased in cardiac hypertrophy and heart failure in both rat and human myocardium. Complete loss of LIMP-2 in genetically engineered mice did not affect cardiac development; however these LIMP-2 null mice failed to mount a hypertrophic response to increased blood pressure but developed cardiomyopathy. Disturbed cadherin localization in these hearts suggested that LIMP-2 has important functions outside lysosomes. Indeed, we also find LIMP-2 in the intercalated disc, where it associates with cadherin. RNAi-mediated knockdown of LIMP-2 decreases the binding of phosphorylated b-catenin to cadherin, while overexpression of LIMP-2 has the opposite effect. Taken together, our data show that lysosomal integrated membrane protein-2 is crucial to mount the adaptive hypertrophic response to cardiac loading. We demonstrate a novel role for LIMP-2 as an important mediator of the intercalated disc.

Publication Title

Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32526
Expression data from breast cancer tumor-initiating cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have generated tumorigenic (S2N) and non-tumorigenic (S2), normal-like to basal-like breast cancer cell lines from primary tumors. At high in vivo inoculation cell numbers of 10^6 cells/mouse both S2N and S2 monolayer as well as sphere culture cells grew at similar rates. However, at low inoculation cell numbers down to 10^3 cells only S2N sphere cells generated xenograft tumors. mRNA profiling revealed a unique cluster pattern of the tumorigenic S2N sphere cells, but a detailed analysis of TIC relevant transcription factors like Oct3, Sox and Nanog family members, Myc, Slug or Twist1 revealed no consistently increased expression in the highly tumorigenic cell lines. Our data indicate that the intrinsic genetic and functional markers investigated are not solely indicative of the in vivo tumorigenicity of putative breast tumor-initiating cells.

Publication Title

Established breast cancer stem cell markers do not correlate with in vivo tumorigenicity of tumor-initiating cells.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon SRP194302
Transcriptomal comparison between group 2 innate lymphoid cells (ILC2s) in the murine small intestine (SI-ILC2s) and those in white adipose tissue (WAT-ILC2s)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Transcriptomal comparison between group 2 innate lymphoid cells (ILC2s) in the murine small intestine (SI-ILC2s) and those in white adipose tissue (WAT-ILC2s). Overall design: mRNA profiles of group 2 innate lymphoid cells (ILC2s) sort-purified from small intestinal lamina propria and mesenteric white adipose tissue of 9-week-old wild type (WT) mice were generated by sequencing, in duplicate, using Illumina HiSeq1500.

Publication Title

Innate Lymphoid Cells in the Induction of Obesity.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE15382
Gene expression profile of embryonic retinas expressing c-hairy1, Delta-1, or Wnt2b
  • organism-icon Gallus gallus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Expression profile of embryonic retinas expressing exogenous c-hairy1, Delta-1, or Wnt2b. These genes inhibits neuronal differentiation, and the results provide insight into the mechanism that keeps retinal progenitor cells undifferentiated.

Publication Title

Hairy1 acts as a node downstream of Wnt signaling to maintain retinal stem cell-like progenitor cells in the chick ciliary marginal zone.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68761
Analyzing synergistic and non-synergistic interactions in signalling pathways using Boolean Nested Effect Models
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Understanding the structure and interplay of cellular signalling pathways is one of the great challenges in molecular biology. Boolean Networks can infer signalling networks from observations of protein activation. In situations where it is difficult to assess protein activation directly, Nested Effect Models are an alternative. They derive the network structure indirectly from downstream effects of pathway perturbations. To date, Nested Effect Models cannot resolve signalling details like the formation of signalling complexes or the activation of proteins by multiple alternative input signals. Here we introduce Boolean Nested Effect Models (B-NEM). B-NEMs combine the use of downstream effects with the higher resolution of signalling pathway structures in Boolean Networks. We show that B-NEMs accurately reconstruct signal flows in simulated data. Using B-NEM we then resolve BCR signalling via PI3K and TAK1 kinases in BL2 lymphoma cell lines.

Publication Title

Analyzing synergistic and non-synergistic interactions in signalling pathways using Boolean Nested Effect Models.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE29700
Stimulation of BL2 cell line with lipopolysaccharide (LPS) for 6h
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genes up or down regulated in LPS stimulated samples in comparison to control samples.

Publication Title

Genomic data integration using guided clustering.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE31102
Expression data from GW8510 treatment of pancreatic cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Expression of insulin in terminally differentiated non-beta pancreatic cell types could be important for treating type-1 diabetes. We observed that the kinase inhibitor GW8510 up-regulated insulin expression in mouse pancreatic alpha cells.

Publication Title

GW8510 increases insulin expression in pancreatic alpha cells through activation of p53 transcriptional activity.

Sample Metadata Fields

Cell line, Compound

View Samples
accession-icon E-MEXP-174
Transcription profiling of Arabidopsis mutants mpk4 and ctr1
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis MPK4 is involved in the control of antagonism between salicylic acid (SA) and ethylene (ET)/jasmonic acid (JA) pathways in the plant innate immune system as a repressor of the SA pathway, but an activator of the ET/JA pathway. Here we and use comparative microarray analysis of ctr1, ctr1/mpk4, mpk4 and wild type to show that MPK4 is required for only a narrow subset of ET regulated genes.

Publication Title

Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE100112
B-cell activating factor (BAFF) stimulation of Burkitt Lymphoma cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Illumina HiSeq 2000

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A comparative study of RNA-Seq and microarray data analysis on the two examples of rectal-cancer patients and Burkitt Lymphoma cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact