refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 200 results
Sort by

Filters

Technology

Platform

accession-icon SRP092111
PRC2 facilitates the regulatory topology required for poised enhancer function during pluripotent stem cell differentiation [RNA-seq EED]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Poised enhancers marked by H3K27me3 in pluripotent cells were previously proposed to facilitate the establishment of somatic expression programs upon embryonic stem cell (ESC) differentiation. However, the functional relevance and mechanism of action of poised enhancers remain unknown. Here, we use genetic deletions to demonstrate that poised enhancers are necessary for the induction of major anterior neural regulators. Mechanistically, poised enhancers enable RNA Polymerase II recruitment to their cognate promoters upon differentiation. Interestingly, poised enhancers already establish physical interactions with their target genes in ESC in a Polycomb repressive complex 2 (PRC2) dependent manner. Loss of PRC2 led to neither the activation of poised enhancers nor the induction of their putative target genes in undifferentiated ESC. In contrast, loss of PRC2 severely and specifically compromised the induction of major anterior neural genes representing poised enhancer targets. Overall, our work illuminates a novel function for polycomb proteins, which we propose facilitate neural induction by providing major anterior neural loci with a permissive regulatory topology. Overall design: mRNA profiles were generated by RNA-seq from mESC and AntNPC for the following lines: WT mESC, WT AntNPC, EED-/- mESC and EED-/- AntNPC

Publication Title

PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP092184
Poised enhancers regulatory activity is topologically facilitated by polycomb [RNA-seq LHX5]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Poised enhancers marked by H3K27me3 in pluripotent cells were previously proposed to facilitate the establishment of somatic expression programs upon embryonic stem cell (ESC) differentiation. However, the functional relevance and mechanism of action of poised enhancers remain unknown. Here, we use genetic deletions to demonstrate that poised enhancers are necessary for the induction of major anterior neural regulators. Mechanistically, poised enhancers enable RNA Polymerase II recruitment to their cognate promoters upon differentiation. Interestingly, poised enhancers already establish physical interactions with their target genes in ESC in a Polycomb repressive complex 2 (PRC2) dependent manner. Loss of PRC2 led to neither the activation of poised enhancers nor the induction of their putative target genes in undifferentiated ESC. In contrast, loss of PRC2 severely and specifically compromised the induction of major anterior neural genes representing poised enhancer targets. Overall, our work illuminates a novel function for polycomb proteins, which we propose facilitate neural induction by providing major anterior neural loci with a permissive regulatory topology. Overall design: mRNA profiles were generated by RNA-seq from AntNPC derived from mESC: WT AntNPC (four biological replicates), PE Lhx5(-109)-/- Clon1 AntNPC (two biological replicates) and PE Lhx5(-109)-/- Clon2 AntNPC (two biological replicates).

Publication Title

PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE53896
Pre-BCR Signaling induce IgK Locus Accessibility by functional redistribution of Enhancer-mediated chromatin Interactions
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

During B cell development the precursor B cell receptor (pre-BCR) checkpoint is thought to increase immunoglobulin k light chain (Igk) locus accessibility to the V(D)J recombinase. Accordingly, pre-B cells lacking the pre-BCR signaling molecules Btk or Slp65 showed reduced germline Vk transcription. To investigate whether pre-BCR signaling modulates Vk accessibility through enhancer-mediated Igk locus topology, we performed chromosome conformation capture and sequencing analyses. These revealed that already in pro-B cells the k enhancers robustly interact with the ~3.2 Mb Vk region and its flanking sequences. Analyses in wild-type, Btk and Slp65 single and double-deficient pre-B cells demonstrated that pre-BCR signaling reduces interactions of both enhancers with Igk locus flanking sequences and increases interactions of the 3k enhancer with Vk genes. Remarkably, pre-BCR signaling does not significantly affect interactions between the intronic enhancer and Vk genes, which are already robust in pro-B cells. Both enhancers interact most frequently with highly used Vk genes, which are often marked by transcription factor E2a. We conclude that the k enhancers interact with the Vk region already in pro-B cells and that pre-BCR signaling induces accessibility through a functional redistribution of long-range chromatin interactions within the Vk region, whereby the two enhancers play distinct roles.

Publication Title

Pre-B cell receptor signaling induces immunoglobulin κ locus accessibility by functional redistribution of enhancer-mediated chromatin interactions.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49176
Gene expressional comparison of in vitro adipocyte models vs. in vivo eWAT
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Comparison of gene expression level of 3T3-L1, PMEF and ES cell derived adipocytes to eWAT samples.

Publication Title

Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49116
Protective Role of IL6 in Vascular Remodeling in Schistosoma-Pulmonary Hypertension
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Protective role of IL-6 in vascular remodeling in Schistosoma pulmonary hypertension.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE48936
Murine Schistosoma-Induced Pulmonary Hypertension: Microarray Data
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Rationale: Schistosomiasis is one of the most common causes of pulmonary arterial hypertension worldwide, but the pathogenic mechanism by which the host inflammatory response contributes to vascular remodeling is unknown. We sought to identify signaling pathways that play protective or pathogenic roles in experimental Schistosoma-induced pulmonary vascular disease by whole-lung transcriptome analysis. Methods: Wildtype mice were experimentally exposed to S. mansoni ova by intraperitoneal sensitization followed by tail vein augmentation, and the phenotype assessed by right ventricular catheterization and tissue histology, RNA and protein analysis. Whole-lung transcriptome analysis by microarray and RNA sequencing was performed, the latter analyzed using 2 bioinformatic methods. Functional testing of the candidate IL-6 pathway was determined using IL6-knockout mice and the STAT3 inhibitor STI-201. Results: Wild-type mice exposed to S. mansoni had increased right ventricular systolic pressure and thickness of the pulmonary vascular media. Whole lung transcriptome analysis identified the IL6-STAT3-NFATc2 pathway as being upregulated, which was confirmed by PCR and immunostaining of lung tissue from S. mansoni-exposed mice and patients who died of the disease. Mice lacking IL6 or treated with STI-201 developed pulmonary hypertension associated with significant intima remodeling after exposure to S. mansoni. Conclusions: Whole lung transcriptome analysis identified upregulation of the IL6-STAT3-NFATc2 pathway, and IL6 signaling was found to be protective against Schistosoma-induced intimal remodeling.

Publication Title

Protective role of IL-6 in vascular remodeling in Schistosoma pulmonary hypertension.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE66332
Gene expression profiling of perinatal or adult regulatory T cells (Tregs)
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

A comparative analysis of gene expression of 3 different experiments; 1. Perinate or adult-tagged GFP+YFP+ and bulk GFP+YFP- Tregs, 2. FL or BM-derived Tregs 3. Perinate or adult thymic Tregs.

Publication Title

Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE66402
Gene expression profiling of perinatal or adult medullary thymic epithelial cells (MECs)
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

A comparative analysis of gene expression of perinate or adult Aire-GFP+ and GFP- MECs in WT or Aire-KO thymus

Publication Title

Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE91074
Gene expression in the brains of different strains of laboratory mice upon intranasal infection with vaccine strain (TC83) of Venezuelan equine encephalitis virus
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Differing from other experimental models, intranasal infection with vaccine strain of Venezuelan equine encephalitis virus, VEEV, (TC83) caused high titer infection in the brain and 90100% mortality in the C3H/HeN murine model. Intranasal infection with VEEV (TC83) caused persistent viral infection in the brains of mice without functional T-cells (-TCR -/-). While wild-type C57BL/6 mice clear infectious virus in the brain by 13 dpi, -TCR -/- maintain infectious virus in the brain to 92 dpi.

Publication Title

Natural killer cell mediated pathogenesis determines outcome of central nervous system infection with Venezuelan equine encephalitis virus in C3H/HeN mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18914
Prepubertal Human Spermatogonia and Mouse Gonocytes Share Conserved Gene Expression of Germline Stem Cell Regulatory
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Full title: Prepubertal Human Spermatogonia and Mouse Gonocytes Share Conserved Gene Expression of Germline Stem Cell Regulatory Molecules

Publication Title

Prepubertal human spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules.

Sample Metadata Fields

Age

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact