refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 99 results
Sort by

Filters

Technology

Platform

accession-icon SRP048562
Genome-wide chromatin analysis of Ewing sarcoma (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We show that EWS-FLI1, an aberrant transcription factor responsible for the pathogenesis of Ewing sarcoma, reprograms gene regulatory circuits by directly inducing or directly repressing enhancers. At GGAA repeats, which lack regulatory potential in other cell types and are not evolutionarily conserved, EWS- FLI1 multimers potently induce chromatin opening, recruit p300 and WDR5, and create de novo enhancers. GGAA repeat enhancers can loop to physically interact with target promoters, as demonstrated by chromosome conformation capture assays. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors and abrogating p300 recruitment. Overall design: Ewing sarcoma cell lines (A673 and SKNMC) were analyzed by RNA-seq. EWS-FLI1 was depleted by infection with lentiviral shRNAs (shFLI1 and shGFP control).

Publication Title

EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP044917
Discovery of biomarkers predictive of GSI response in triple negative breast cancer and adenoid cystic carcinoma
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Next generation sequencing was used to identify Notch mutations in a large collection of diverse solid tumors. NOTCH1 and NOTCH2 rearrangements leading to constitutive receptor activation were confined to triple negative breast cancers (TNBC, 6 of 66 tumors). TNBC cell lines with NOTCH1 rearrangements associated with high levels of activated NOTCH1 (N1-ICD) were sensitive to the gamma-secretase inhibitor (GSI) MRK-003, both alone and in combination with pacitaxel, in vitro and in vivo, whereas cell lines with NOTCH2 rearrangements were resistant to GSI. Immunohistochemical staining of N1-ICD in TNBC xenografts correlated with responsiveness, and expression levels of the direct Notch target gene HES4 correlated with outcome in TNBC patients. Activating NOTCH1 point mutations were also identified in other solid tumors, including adenoid cystic carcinoma (ACC). Notably, ACC primary tumor xenografts with activating NOTCH1 mutations and high N1-ICD levels were sensitive to GSI, whereas N1-ICD low tumors without NOTCH1 mutations were resistant. Overall design: Gene expression profiling for Notch-sensitive cancer cell lines using RNA-seq, each sample with triplicates

Publication Title

Discovery of biomarkers predictive of GSI response in triple-negative breast cancer and adenoid cystic carcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54380
Genome-wide chromatin maps of T-cell acute lymphoblastic leukemia (T-ALL)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE54378
Gene expression profiles of T-cell acute lymphoblastic leukemia cell lines with and without chronic GSI-treatment
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Here we modeled T-ALL resistance to Notch inhibition, identifying persister cells that readily expand in the presence of gamma secretase inhibitor (GSI) and the absence of Notch signaling. Rare persister cells are already present in nave T-ALL populations, and the reversibility of the phenotype is suggestive of an epigenetic mechanism. Relative to GSI-sensitive cells, persisters activate distinct signaling and gene expression programs, and exhibit global chromatin compaction. A shRNA screen identified chromatin regulators whose depletion preferentially impairs persister cell viability, including BRD4, an acetyl-histone reader. BRD4 is up-regulated in the persisters and binds enhancers near genes with critical functions in T-ALL, including MYC and BCL2. Treatment of persisters with the BRD4 inhibitor JQ1 down-regulates these targets and induces growth arrest and apoptosis, at doses well tolerated by GSI-sensitive cells. Prompted by these findings, we examined and established the efficacy of GSI JQ1 combination therapy against primary human leukemias in vivo. Our findings establish a role for epigenetic heterogeneity in leukemia drug resistance and suggest the potential of combination therapies that include epigenetic modulators to prevent and treat resistant disease.

Publication Title

An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP101298
RNAseq of CCRF-CEM, a T-cell acute lymphoblastic leukemia cell line, after knockdown with 2 control hairpins and 6 hairpins targeting the PRC2 complex.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The data was used to study mechanisms of apoptosis resistance induced by loss of PRC2. Overall design: CCRF-CEM cells infected with shLuciferase, shGFP, shEZH2.1, shEZH2.4, shEED2, shEED5, shSUZ12.2, shSUZ12.3 were harvested, RNA isolated, and RNAsequencing performed on HiSeq 2000.

Publication Title

PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE35303
Total Gene expression analysis of H3f3b constitutive knockout testis RNA
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Total gene expression analysis was performed on RNA from testes extracted from two litters of constitutive homozygous and heterozygous H3f3b knockout mice compared to WT littermates.

Publication Title

Histone H3.3 regulates dynamic chromatin states during spermatogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35321
Gene expression changes with loss of H3f3b
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35301
Total Gene expression analysis of H3f3b conditional knockout MEFs
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Total gene expression analysis was performed on CRE induced conditional knockout E12.5 MEFs relative to GFP infected control MEFs. Intent was to analyze the role of H3f3b in overall gene expression.

Publication Title

Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12538
Differentially regulated genes in control and c-myc N-myc deficient LT-HSCs and progenitors
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE12467
Differentially regulated genes in control and c-myc N-myc deficient LT-HSCs
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Analysis of HSCs from control and c-myc N-myc deficient long-term hematopoietic stem cells. HSCs lacking both c-myc and N-myc display increased apoptosis rates. Data provide insight into the molecular changes occuring upon complete loss of Myc activity, clarifying the resulting apoptotic mechanism and the role of Myc family proteins in HSCs.

Publication Title

Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact