refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 55 results
Sort by

Filters

Technology

Platform

accession-icon GSE43398
Nave pluripotency is associated with global DNA hypomethylation
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Naive pluripotent embryonic stem cells (ESCs) and embryonic germ cells (EGCs) are derived from the preimplantation epiblast and primordial germ cells (PGCs), respectively. We investigated whether differences exist between ESCs and EGCs, in view of their distinct developmental origins. PGCs are programmed to undergo global DNA demethylation; however, we find that EGCs and ESCs exhibit equivalent global DNA methylation levels. Importantly, inhibition of Erk and Gsk3b by 2i conditions leads to pronounced reduction in DNA methylation in both cell types. This is driven by Prdm14 and is associated with downregulation of Dnmt3a and Dnmt3b. However, genomic imprints are maintained in 2i, and we report derivation of EGCs with intact genomic imprints. Collectively, our findings establish that culture in 2i instills a naive pluripotent state with a distinctive epigenetic configuration that parallels molecular features observed in both the preimplantation epiblast and nascent PGCs.

Publication Title

Naive pluripotency is associated with global DNA hypomethylation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE45627
MiR-221 mediated gene expression in human PCa cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MiR-221 overexpression leads to activation of apoptosis, growth arrest and reduced invasivness in PCa cells. Interaction of miR-221 with potential target genes was analyzed by a genome wide expression profiling.. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real Time RT-PCR assay (IRF1, IRF2 SOCS3, STAT1), and Western Blotting. In total, 282 genes were upregulated and 64 downregulated based on a more than 2-fold difference to untransfected PC-3 cells. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, tumorigenesis and inflammation. We confirmed dysregulation of IRF-2 SOCS3, STAT1,IRF9. These results indicate that miR-221 overexpression might lead to activation of the JAK/STAT pathway and downregulation of miR-221 might contribute to tumorigenesis in PCa cells.

Publication Title

Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP034736
Overexpression of ERG in cord blood progenitors promotes expansion and recapitulates molecular signatures of high ERG leukemias
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

High expression of the ETS family transcription factor ERG is associated with poor clinical outcome in acute myeloid leukemia (AML) and acute T-cell lymphoblastic leukemia (T-ALL). In murine models, high ERG expression induces both T-ALL and AML. However, no study to date has defined the effect of high ERG expression on primary human hematopoietic cells. In the present study, human CD34+ cells were transduced with retroviral vectors to elevate ERG gene expression to levels detected in high ERG AML. RNA sequencing was performed on purified populations of transduced cells to define the effects of high ERG on gene expression in human CD34+ cells. Integration of the genome-wide expression data with other data sets revealed that high ERG drives an expression signature that shares features of normal hematopoietic stem cells, high ERG AMLs, early T-cell precursor-ALLs and leukemic stem cell signatures associated with poor clinical outcome. Functional assays linked this gene expression profile to enhanced progenitor cell expansion. These results support a model whereby a stem cell gene expression network driven by high ERG in human cells enhances the expansion of the progenitor pool, providing opportunity for the acquisition and propagation of mutations and the development of leukemia. Overall design: RNA sequencing in ERG overexpressing human CD34+ cells

Publication Title

Overexpression of ERG in cord blood progenitors promotes expansion and recapitulates molecular signatures of high ERG leukemias.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49787
Expression data of leukemia samples taken from transgenic ERG mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The Ets transcription factor, ERG, plays a central role in definitive hematopoiesis and its overexpression in acute myeloid leukemia is associated with a stem cell signature and bad prognosis. However, little is known about the underlying mechanism by which ERG causes leukemia. Therefore we sought to identify ERG targets that participate in development of leukemia by integration of expression arrays and Chromatin immunoprecipitation.

Publication Title

Genome-scale expression and transcription factor binding profiles reveal therapeutic targets in transgenic ERG myeloid leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19923
Expression data from E protein deficient double-positive (DP) thymocytes
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We wanted to test the role of mammalian E proteins E2A and HEB in the development of T cells.

Publication Title

An essential role for the transcription factor HEB in thymocyte survival, Tcra rearrangement and the development of natural killer T cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE7891
Trancriptome profiling of rat inner medullary collecting duct
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Identification of gene expressed in the enriched inner medullary collecting duct cells in rat.

Publication Title

Transcriptional profiling of native inner medullary collecting duct cells from rat kidney.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE50541
Experimentally identified targets of a subset of adenovirus 5-encoded miRNAs.
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Human adenovirus 5 encodes a small set of miRNAs, which are generated by DICER-mediated processing of 2 larger precursors, the so-called virus-associated RNAs I and II. To identify targets of one of the major miRNA isoforms derived from virus-associated RNAI (mivaRNAI-137), we isolated Argonaute complexes of mivaRNAI-137-transfected cells and analyzed co-purifying RNAs by microarray analysis. RNAs enriched in Argonaute complexes of mivaRNAI-137-transfected cells compared to cells transfected with a control siRNA were identified and subjected to further validation. RNAs specifically associated with Argonaute-containining complexes of adenovirus 5-infected cells were identified as well.

Publication Title

Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE59506
Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Neuronal function critically depends on coordinated subcellular distribution of mRNAs. Disturbed mRNA processing and axonal transport has been found in spinal muscular atrophy and could be causative for dysfunction and degeneration of motoneurons. Despite the advances made in characterizing the transport mechanisms of several axonal mRNAs, an unbiased approach to identify the axonal repertoire of mRNAs in healthy and degenerating motoneurons has been lacking. Here we used compartmentalized microfluidic chambers to investigate the somatodendritic and axonal mRNA content of cultured motoneurons by microarray analysis. In axons, transcripts related to protein synthesis and energy production were enriched relative to the somatodendritic compartment. Knockdown of Smn, the protein deficient in spinal muscular atrophy, produced a large number of transcript alterations in both compartments. Transcripts related to immune functions, including MHC class I genes, and with roles in RNA splicing were upregulated in the somatodendritic compartment. On the axonal side, transcripts associated with axon growth and synaptic activity were downregulated. These alterations provide evidence that subcellular localization of transcripts with axonal functions as well as regulation of specific transcripts with nonautonomous functions is disturbed in Smn-deficient motoneurons, most likely contributing to the pathophysiology of spinal muscular atrophy.

Publication Title

Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP069067
Probing Hemogenic Precursors with Endoglin Regulatory Elements uncovers LRP2 as a Regulator of Hematopoiesis
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Different combinations of Endoglin tissue specific enhancers define hemangioblast and hemogenic endothelium cell fractions Overall design: We generated a series of embryonic stem cell lines, each targeted with reporter constructs driven by tissue specific promoter/enhancer combinations of Endoglin (ENG). The Eng promoter (P) when combined with the -8/+7/+9kb enhancers targeted cells in FLK1 mesoderm that were enriched for blast colony forming potential, whereas the P/-8kb enhancer targeted TIE2+/c-KIT+/CD41- HE cells that were enriched for hematopoietic potential. These cell fractions were isolated and their transcriptomes profiled by RNA-seq.

Publication Title

Identification of novel regulators of developmental hematopoiesis using Endoglin regulatory elements as molecular probes.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE60747
Hey target gene regulation in murine ES cells and cardiomyocytes
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact