refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 206 results
Sort by

Filters

Technology

Platform

accession-icon GSE27901
Transactivation-deficient p53 Mutants in Ras-induced Cellular Senescence
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

As a critical cellular stress sensor, p53 mediates a variety of defensive processes including cell-cycle arrest, apoptosis, and senescence to prevent propagation of hyperproliferative cells or cells with a damaged genome, hence the formation of neoplasia. Transactivation of downstream genes plays an important while sometimes controversial role in regulating these cellular processes. To evaluate the dependence on transcriptional activation in p53s activities, we generated genetically-modified mouse lines carrying mutations in the transactivation domains (TADs) of p53. These transactivatio-deficient mutants serve as unique reagents to probe the dependence on robust transactivation in p53-mediated cellular functions, as well as the underneath mechanisms. To identify genes differentially regulated by these p53 mutants, we performed gene expression profiling analysis on mouse embryonic fibroblast cells (MEFs) from these mice in the context of oncogenic Ras-induced premature cellular senescence.

Publication Title

Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6697
Expression data from spec. transcriptional activity of primary mouse embryonic fibroblasts (MEF) in response to serum.
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Current methods to analyze gene expression measure steady-state levels of mRNA. In order to specifically analyze mRNA transcription, a technique has been developed that can be applied in-vivo. The technique is referred with the acronym NIAC-NTR (Non Invasive Application and Capture of Newly Transcribed RNA). This method makes use of the cellular pyrimidine salvage pathway and is based on affinity-chromatographic isolation of thiolated mRNA. When combined with data on mRNA steady-state levels, this method is able to assess the relative contributions of mRNA synthesis and degradation/stabilization. It overcomes limitations associated with currently available methods such as mechanistic intervention that disrupts cellular physiology, or the inability to apply the techniques in-vivo. The method has been applied to a model of serum response of cultured primary mouse embryonic fibroblasts.

Publication Title

Microarray analysis of newly synthesized RNA in cells and animals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6698
Expression data from spec. transcrip. activity of contralateral mouse kidneys in response to Ischemia-Reperfusion-Injury
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Current methods to analyze gene expression measure steady-state levels of mRNA. In order to specifically analyze mRNA transcription, a technique has been developed that can be applied in-vivo in intact cells and animals. The technique is referred with the acronym NIAC-NTR (Non Invasive Application and Capture of Newly Transcribed RNA). This method makes use of the cellular pyrimidine salvage pathway and is based on affinity-chromatographic isolation of thiolated mRNA. When combined with data on mRNA steady-state levels, this method is able to assess the relative contributions of mRNA synthesis and degradation/stabilization. It overcomes limitations associated with currently available methods such as mechanistic intervention that disrupts cellular physiology, or the inability to apply the techniques in-vivo. The method was applied to study renal ischemia reperfusion injury, demonstrating its applicability for whole organs in-vivo.

Publication Title

Microarray analysis of newly synthesized RNA in cells and animals.

Sample Metadata Fields

Age

View Samples
accession-icon SRP033261
Whole transcriptomic sequencing of zebrafish rx3 mutants during optic vesicle morphogenesis
  • organism-icon Danio rerio
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

To identify genes regulated by Rx3 during optic vesicle morphogenesis, adult zebrafish carriers of a null rx3 mutation were mated. Before 13 hours post fertilization (hpf), the earliest time point at which optic vesicle evagination phenotypes could be reliably detected, offspring were phenotypically separated into pools comprising of mutants with an absence of optic vesicles or siblings exhibiting a wild-type phenotype. Three replicates of pooled RNA samples from 13 hpf eyeless mutants (rx3-/-) or phenotypically wild-type siblings (rx3+/+ or rx3+/-), and one replicate of 13 hpf wild-type zebrafish larva were collected for whole transcriptome sequencing. Overall design: Whole transcriptome sequencing (RNA-seq) was performed on zebrafish rx3-/- mutants, wild-type siblings and wild-type AB strains at 13 hpf

Publication Title

Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36796
Effects of TCDD on differentiating NHEKs
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

TCDD increased expression of numerous differentiation specific genes and decreased expression of numerous genes involved in mitochondrial health and redox homeostasis

Publication Title

2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated production of reactive oxygen species is an essential step in the mechanism of action to accelerate human keratinocyte differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE9201
Identification of genes responding to the activity of the Arabidopsis cytochrome P450 KLUH/CYP78A5
  • organism-icon Arabidopsis thaliana
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Arabidopsis cytochrome P450 KLUH (KLU)/CYP78A5 promotes organ growth in a non-cell autonomous manner. To identify genes regulated by KLU activity, homozygous klu-2 mutants carrying constructs for EtOH-inducible overexpression of wild-type KLU (35S::AlcR-AlcA::KLU) or of enzymatically inactive KLU protein (35S::AlcR-AlcA::KLUmut) were induced with EtOH and sampled at 90 min and 240 min after induction for gene expression changes.

Publication Title

Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056835
Novel Observations from Next Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Understanding distinct gene expression patterns of normal adult and developing fetal human pancreatic a and b cells is crucial for developing stem cell therapies, islet regeneration strategies, and therapies designed to increase b cell function in patients with diabetes (type 1 or 2). Toward that end, we have developed methods to highly purify a, b, and d cells from human fetal and adult pancreata by intracellular staining for the cell-specific hormone content, sorting the sub-populations by flow cytometry and, using next generation RNA sequencing, we report on the detailed transcriptomes of fetal and adult a and b cells. We observed that human islet composition was not influenced by age, gender, or body mass index and transcripts for inflammatory gene products were noted in fetal b cells. In addition, within highly purified adult glucagon-expressing a cells, we observed surprisingly high insulin mRNA expression, but not insulin protein expression. This transcriptome analysis from highly purified islet a and b cell subsets from fetal and adult pancreata offers clear implications for strategies that seek to increase insulin expression in type 1 and type 2 diabetes. Overall design: RNA-sequencing of highly purified human adult and fetal islet cell subset was performed using our newly developed method. Using this data, we can study and compare the detailed transcriptome or alpha and beta cells during development.

Publication Title

Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP038726
Energy Metabolism during Anchorage-Independence
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1000

Description

The detachment of epithelial cells, but not cancer cells, causes anoikis due to reduced energy production. Invasive tumor cells generate three splice variants of the metastasis gene osteopontin. The cancer-specific form osteopontin-c supports anchorage-independence through inducing oxidoreductases and upregulating intermediates/enzymes in the hexose monophosphate shunt, glutathione cycle, glycolysis, glycerol phosphate shuttle, and mitochondrial respiratory chain. Osteopontin-c signaling upregulates glutathione (consistent with the induction of the enzyme GPX-4), glutamine and glutamate (which can feed into the tricarboxylic acid cycle). Consecutively, the cellular ATP levels are elevated. The elevated creatine may be synthesized from serine via glycine and also supports the energy metabolism by increasing the formation of ATP. Metabolic probing with N-acetyl-L-cysteine, L-glutamate, or glycerol identified differentially regulated pathway components, with mitochondrial activity being redox dependent and the creatine pathway depending on glutamine. The effects are consistent with a stimulation of the energy metabolism that supports anti-anoikis. Our findings imply a synergism in cancer cells between osteopontin-a, which increases the cellular glucose levels, and osteopontin-c, which utilizes this glucose to generate energy. Overall design: mRNA profiles of MCF-7 cells transfected with osteopontin-a, osteopontin-c and vector control were generated by RNA-Seq, in triplicate, by Illumina HiSeq.

Publication Title

Energy metabolism during anchorage-independence. Induction by osteopontin-c.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE86155
IDENTIFICATION OF ADULT ZEBRAFISH CONE PHOTORECEPTOR-ENRICHED GENES
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Cone photoreceptors are specialised sensory retinal neurons responsible for photopic vision, colour perception and visual acuity. Retinal degenerative diseases are a heterogeneous group of eye diseases in which the most severe vision loss typically arises from cone photoreceptor dysfunction or degeneration. Establishing a method to purify cone photoreceptors from retinal tissue can accelerate the identification of key molecular determinants that underlie cone photoreceptor development, survival and function. The work herein describes a new method to purify enhanced green fluorescent protein (EGFP)-labelled cone photoreceptors from adult retina of Tg(3.2TCP:EGFP) zebrafish. Electropherograms confirmed downstream isolation of high-quality RNA with RNA integrity number (RIN) >7.6 and RNA concentration >5.7 ng/l obtained from both populations. Reverse Transcriptase-PCR (RT-PCR) confirmed that the EGFP-positive cell populations express known genetic markers of cone photoreceptors that were not expressed in the EGFP-negative cell population. This work is an important step towards the identification of cone photoreceptor-enriched genes, protein and signalling networks responsible for their development, survival and function. In addition, this advancement facilitates the identification of novel candidate genes for inherited human blindness.

Publication Title

HDAC6 inhibition by tubastatin A is protective against oxidative stress in a photoreceptor cell line and restores visual function in a zebrafish model of inherited blindness.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE99199
Pharmacogenomic comparison between D3T- and CDDO-Im in mouse liver tissue
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Keap1/Nrf2 signaling pathway is a tractable target for the pharmacological prevention of tumorigenesis. 3H-1,2-dithiole-3-thione (D3T) and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) are representative members of two classes of Nrf2-activating chemopreventive agents. Natural dithiolethiones have been widely used in clinical trials for cancer chemoprevention. Synthetic triterpenoids, however, have been shown to be significantly more potent Nrf2 activators and are under clinical evaluation for the treatment of chronic kidney disease. This study seeks to characterize the structure-activity relationship between D3T and CDDO-Im in mouse liver tissue. To this end we treated Wt and Nrf2-null mice with 300 umol/kg bw D3T and 3, 10, and 30 umol/kg bw CDDO-Im every other day for 5 days and evaulated global gene expression changes as a product of both treamtent and genotype using Affymetrix microarray.

Publication Title

Pharmacogenomics of Chemically Distinct Classes of Keap1-Nrf2 Activators Identify Common and Unique Gene, Protein, and Pathway Responses In Vivo.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact