refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 270 results
Sort by

Filters

Technology

Platform

accession-icon GSE19194
Cbfb/Runx1-repression independent blockage of differentiation and accumulation of Csf2rb expressing cells by Cbfb-MYH11
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

It is known that CBFB-MYH11, the fusion gene generated by inversion of chromosome 16 in human acute myeloid leukemia, is causative for oncogenic transformation. However, the mechanism by which CBFB-MYH11 initiates leukemogenesis is not clear. Previously published reports showed that CBFB-MYH11 dominantly inhibits RUNX1 and CBFB, and such inhibition has been suggested as the mechanism for leukemogenesis. However, knockin mice expressing Cbfb-MYH11 (Cbfb+/MYH11) showed defects in primitive hematopoiesis not seen in Cbfb null (Cbfb-/-) embryos indicating that Cbfb-MYH11 has repression independent activities as well.

Publication Title

Cbfb/Runx1 repression-independent blockage of differentiation and accumulation of Csf2rb-expressing cells by Cbfb-MYH11.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42238
The C-terminus of CBF-SMMHC is required to induce embryonic hematopoietic defects and leukemogenesis.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The C-terminus of CBF-SMMHC, the fusion protein produced by a chromosome 16 inversion in acute myeloid leukemia subtype M4Eo, contains domains for self-mulimerization and transcriptional repression, both of which have been proposed to be important for leukemogenesis by CBF-SMMHC. To test the role of the fusion protein's C-terminus in vivo, we generated knock-in mice expressing a C-terminally truncated CBF-SMMHC (CBF-SMMHCC95). Embryos with a single copy of CBF-SMMHCDC95 were viable and showed no defects in hematopoiesis, while embryos homozygous for the CBF-SMMHCC95 allele had hematopoietic defects and died in mid-gestation, similar to embryos with a single-copy of the full-length CBF-SMMHCC95.

Publication Title

The C-terminus of CBFβ-SMMHC is required to induce embryonic hematopoietic defects and leukemogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37982
Expression data from iPS cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We generated iPSCs from imatinib-sensitive chronic myelogenous leukemia (CML) patient samples.

Publication Title

Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE21155
Accelerated leukemogenesis by truncated CBFb-SMMHC defective in high-affinity binding with RUNX1
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dominant RUNX1 inhibition has been proposed as a common pathway for CBF-leukemia. CBFb-SMMHC, a fusion protein in human acute myeloid leukemia (AML), dominantly inhibits RUNX1 largely through its RUNX1 high-affinity binding domain (HABD). We generated knock-in mice expressing CBFb-SMMHC with a HABD deletion, CBFb-SMMHCd179-221. These mice developed leukemia highly efficiently, even though hematopoietic defects associated with Runx1-inhibition were partially rescued.

Publication Title

Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP056981
Transcriptome analysis of the effects of GSK-J4 and L-ascorbic acid in female embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The effects of a histone demethylase inhibitor, GSK-J4, and L-ascorbic acid for the transcriptome in female ES cells were analyzed by RNA-sequence. Total RNA was used for high-throughput sequence with Illumina HiSeq 2500 and mapped to mm10. Overall design: Total RNA profile

Publication Title

Histone demethylation maintains Prdm14 and Tsix expression and represses xIst in embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP119967
WNK1 kinase and the termination factor PCF11 connect nuclear mRNA export with transcription
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Transcription termination and mRNA export from the nucleus are closely regulated and coordinated processes. Nuclear export factors are recruited to actively transcribed genes through their interactions with protein complexes associated with transcription and co-transcriptional pre-mRNA processing. We determine a new role for the kinase WNK1 in the cross-talk of transcription termination and mRNA export. WNK1 was previously attributed a cytoplasmic role as a regulator of ion transport. However, we now show a nuclear function for this kinase where it is required for efficient mRNA export along with the transcription termination factor PCF11. Finally, we identify the phosphorylation of the CID domain of PCF11 as an important step for the release of the mRNA from the transcription locus, thus allowing efficient mRNA export to the cytoplasm. Overall design: RNA from cytoplasmic and nuclear extracts of HeLa cells was obtained, upon depletion of WNK1 kinase or from control cells. Upon pA selection, libraries were generated and sequenced. A duplicate experiment was performed for each sample.

Publication Title

WNK1 kinase and the termination factor PCF11 connect nuclear mRNA export with transcription.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP169609
Selective roles of vertebrate PCF11 in premature and full-length transcript termination (chromatin-bound RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: Semi-nascent transcriptome measured by chromatin-bound RNA-seq in HeLa cells. Control and PCF11 knock-down (2 biological replicates) and control and PCF11 PAS1 deletion (4 biological replicates).

Publication Title

Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP175015
Selective roles of vertebrate PCF11 in premature and full-length transcript termination (zebrafish 3' mRNA-seq)
  • organism-icon Danio rerio
  • sample-icon 56 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: 3' mRNA-seq in individual zebrafish embryo heads. Two types of mutants: zPCF11 null and zPCF11 with deletion of PAS1. Wild-type (wt, +/+), heterozygous (het, +/-) and homozygous mutant (hom, -/-) embryos were analyzed. Wild-type and heterozygous animals were phenotypically indistinguishable.

Publication Title

Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP175016
Selective roles of vertebrate PCF11 in premature and full-length transcript termination (human 3' mRNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: 3' mRNA-seq in HeLa cells. Control and PCF11 knock-down (4 biological replicates); control and PCF11 PAS1 deletion clones muA and muB (3 biological replicates); control and additional PCF11 PAS1 deletion clones muC and muD (1 replicate).

Publication Title

Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE11446
CD8 T cells stimulated with IL-2 complex in vivo
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

IL-2 signals into CD8 T cells have a programming and regulatory role in driving cells to full effector and memory differentiation. This study was designed to look for IL-2 target genes that affect CD8 T cell responses.

Publication Title

Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact