refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 65 results
Sort by

Filters

Technology

Platform

accession-icon GSE64232
Gene expression profiles of canonical and non-canonical NF-B signaling pathways in Hodgkins lymphoma
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Malignant Hodgkin's lymphoma (HL) cells are characterized by constitutive activation of the canonical as well as the non-canonical NF-B signaling cascades. We depleted subunit combinations corresponding to either canonical (p50/RelA) or non-canonical (p52/RelB) dimers in the HL cell line L-1236 and performed Affymetrix microarray analysis. Knockdown of p52/RelB affected the expression of a significantly higher number of genes than the knockdown of p50/RelA. The two sets of target genes presented a partial overlap, however they also revealed specific genes that are involved in distinct aspects of tumor biology.

Publication Title

A roadmap of constitutive NF-κB activity in Hodgkin lymphoma: Dominant roles of p50 and p52 revealed by genome-wide analyses.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE64234
Gene expression profile of the NF-B subunit p52 in Hodgkins lymphoma
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Malignant cells of Hodgkin's lymphoma (HL) cells are characterized by constitutive activation of the canonical as well as the non-canonical NF-B signaling cascades. Knockdown of a subunit combination corresponding to the non-canonical NF-B dimer (p52/RelB) in the HL cell line L-1236 caused up-regulation of a set of genes that are associated with hematopoietic and lymphoid organ development. As p52 can form homodimeric complexes, which can repress transcription either alone or in association with transcriptional repressors such as HDAC1, we knocked down p52 alone to analyze its role in gene repression in HL cells. We found that the single knockdown of p52 is indeed sufficient to up-regulate an interesting set of genes that may play a role in B-cell and/or HL development.

Publication Title

A roadmap of constitutive NF-κB activity in Hodgkin lymphoma: Dominant roles of p50 and p52 revealed by genome-wide analyses.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE46974
IkB-like protein NFKBIZ regulates NF-kB signaling and is critical for survival of ABC DLBCL
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Feature Number version)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

IκB-ζ controls the constitutive NF-κB target gene network and survival of ABC DLBCL.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE46971
IkB-like protein NFKBIZ regulates NF-kB signaling and is critical for survival of ABC DLBCL (NFKBIZ inhibition)
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconAgilent-014850 Whole Human Genome Microarray 4x44K G4112F (Feature Number version), Illumina HumanHT-12 V4.0 expression beadchip

Description

Constitutive activation of the nuclear factor-kappa B (NF-kB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-kB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the IkB-like protein NFKBIZ that binds NF-kB subunits and enhances transactivation of some NF-kB target genes while repressing others, to be upregulated in ACB compared to GCB DLBCL primary patient samples (p=5.1 x 10^-37). Knockdown of NFKBIZ by RNA interference was toxic to ABC but not GCB DLBCL cell lines. Gene expression profiling following NFKBIZ knockdown significantly downregulated a large number of NF-kB target genes, suggesting a central role in regulating NF-kB signaling. To further investigate the molecular mechanisms of how NFKBIZ mediates NF-kB signaling in ABC DLBCL, we performed immunoprecipitations and detected an interaction of NFKBIZ with both p50 and p52 NF-kB subunits, indicating that both the canonical and non-canonical NF-kB pathways are regulated by NFKBIZ. Collectively, our data imply that NFKBIZ is required for NF-kB signaling in ABC DLBCL and thus might represent a promising molecular target for future therapies.

Publication Title

IκB-ζ controls the constitutive NF-κB target gene network and survival of ABC DLBCL.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE46972
IkB-like protein NFKBIZ regulates NF-kB signaling and is critical for survival of ABC DLBCL (MLN inhibition)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Constitutive activation of the nuclear factor-kappa B (NF-kB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-kB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the IkB-like protein NFKBIZ that binds NF-kB subunits and enhances transactivation of some NF-kB target genes while repressing others, to be upregulated in ACB compared to GCB DLBCL primary patient samples (p=5.1 x 10^-37). Knockdown of NFKBIZ by RNA interference was toxic to ABC but not GCB DLBCL cell lines. Gene expression profiling following NFKBIZ knockdown significantly downregulated a large number of NF-kB target genes, suggesting a central role in regulating NF-kB signaling. To further investigate the molecular mechanisms of how NFKBIZ mediates NF-kB signaling in ABC DLBCL, we performed immunoprecipitations and detected an interaction of NFKBIZ with both p50 and p52 NF-kB subunits, indicating that both the canonical and non-canonical NF-kB pathways are regulated by NFKBIZ. Collectively, our data imply that NFKBIZ is required for NF-kB signaling in ABC DLBCL and thus might represent a promising molecular target for future therapies.

Publication Title

IκB-ζ controls the constitutive NF-κB target gene network and survival of ABC DLBCL.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP056630
Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We report that Dnmt1 is crucial during perinatal intestinal development. Loss of Dnmt1 in intervillus progenitor cells causes global hypomethylation, DNA damage, premature differentiation, and apoptosis, and consequently, loss of nascent villi. We further confirm the critical role for Dnmt1 during crypt development using the in vitro organoid culture system, and illustrate a clear differential requirement for Dnmt1 in immature versus mature organoids. These results demonstrate an essential role for Dnmt1 in maintaining genomic stability during intestinal development and the establishment of intestinal crypts. Overall design: We performed RNA-Seq of control and Dnmt1-ablated intestinal progenitor cells isolated from parrafin embedded tissues by laser capture microdissection (LCM).

Publication Title

Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3116
Comparison of HNF4 null to control colons
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Background and Aims: HNF4a is a nuclear hormone receptor transcription factor that has been shown to be required for hepatocyte differentiation and development of the liver. It has also been implicated in regulating expression of genes that act in the epithelium of the lower gastrointestinal tract. This implied that HNF4a might be required for development of the gut. Methods: We generated mouse embryos in which HNF4a was ablated in the epithelial cells of the fetal colon using Cre-loxP technology. Embryos were examined using a combination of histology, immunohistochemistry, gene array and RT-PCR, and chromatin immunoprecipitation analyses to define the consequence of loss of HNF4a on colon development. Results: Embryos could be generated until E18.5 that lacked HNF4a in their colon. Although, early stages of colonic development occurred, HNF4a null colons failed to form normal crypts. In addition, goblet cell maturation was perturbed and expression of an array of genes that encode proteins with diverse roles in colon function was disrupted. Several genes whose expression in the colon was dependent on HNF4a contained HNF4abinding sites sequences within putative transcriptional regulatory regions and a subset of these sites were occupied by HNF4a in vivo. Conclusion: HNF4a is a transcription factor that is essential for development of the mammalian colon, regulates goblet cell maturation and is required for expression of genes that control normal colon function and epithelial cell differentiation.

Publication Title

Hepatocyte nuclear factor 4alpha is essential for embryonic development of the mouse colon.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7791
Brd7, a novel PBAF-specific SWI/SNF subunit, is required for gene activation and repression in embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The composition of chromatin remodeling complexes dictates how these enzymes control transcriptional programs and cellular identity. Here, we investigate the composition of SWI/SNF complexes in embryonic stem cells (ESCs). In contrast to differentiated cells, ESCs have a biased incorporation of certain paralogous SWI/SNF subunits, with low levels of Brm, BAF170 and ARID1B. Upon differentiation, the expression of these subunits increases, resulting in a higher diversity of compositionally distinct SWI/SNF enzymes. We also identify Brd7 as a novel component of the PBAF complex in both ESCs and differentiated cells. Using shRNA-mediated depletion of Brg1, we show that SWI/SNF can function as both a repressor and an activator in pluripotent cells, regulating expression of developmental modifiers and signaling components such as Nodal, ADAMTS1, Bmi-1, CRABP1 and TRH. Knock-down studies of PBAF-specific Brd7 and of a signature subunit within the BAF complex, ARID1A, show that these two sub-complexes affect SWI/SNF target genes differentially, in some cases even antagonistically. This may be due to their different biochemical properties. Finally, we examine the role of SWI/SNF in regulating its target genes during differentiation. We find that SWI/SNF affects recruitment of components of the pre-initiation complex in a promoter-specific manner, to modulate transcription positively or negatively. Taken together, our results provide insight into the function of compositionally diverse SWI/SNF enzymes that underlie their inherent gene-specific mode of action.

Publication Title

BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP003449
Tissue-specific Regulation of Mouse MicroRNA Genes in Endodermally-Derived Tissues
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

MicroRNAs fine-tune the activity of hundreds of protein-coding genes. The identification of tissue-specific microRNAs and their promoters has been constrained by the limited sensitivity of prior microRNA quantification methods. Here we determine the entire microRNAome of three endoderm-derived tissues, liver, small intestine, and pancreas, using ultra-high throughput sequencing. Although many microRNA genes are expressed at comparable levels, 162 microRNAs exhibited striking tissue-specificity. After mapping the promoters for these microRNA genes using H3K4me3 histone occupancy, we analyzed the regulatory modules of 63 microRNAs differentially expressed between liver and small intestine or pancreas. We determined that the same transcriptional regulatory mechanisms govern tissue-specific gene expression of both mRNA and microRNA encoding genes in mammals.

Publication Title

Tissue-specific regulation of mouse microRNA genes in endoderm-derived tissues.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17938
Retinal Pigment Epithelial Cells Upregulate Expression of Complement Factors after Co-culture with Activated T Cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19) by a membrane. Differential gene expression in the RPE cells of complement factor genes was identified using gene arrays, and selected gene transcripts were validated by q-RT-PCR. Protein expression was determined by ELISA and immunoblotting. Co-culture with activated T cells increased RPE mRNA and/or protein expression of complement components C3, factors B, H, H-like 1, CD46, CD55, CD59, and clusterin, in a dose-dependent manner. Soluble factors derived from activated T cells are capable of increasing expression of complement components in RPE cells. This is important for the further understanding of inflammatory ocular diseases such as uveitis and age-related macular degeneration.

Publication Title

Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells.

Sample Metadata Fields

Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact