refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 281 results
Sort by

Filters

Technology

Platform

accession-icon GSE12444
FOXF2-regulated genes in human primary prostate stromal cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To identify the genes and pathways regulated by FOXF2, we investigated potential FOXF2 gene targets by microarray analyses of primary prostate stromal cells (PrSC) in which FOXF2 was knocked down by siRNA. 190 differentially expressed genes were selected, of which 104 genes were more highly expressed in PrSC cells treated with FOXF2 siRNA and 86 were more highly expressed in PRSC cells treated with negative control siRNA.

Publication Title

The FOXF2 pathway in the human prostate stroma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41410
Co-expression of genes with ERG in prostate cancers and cell lines
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE41408
Co-expression of genes with ERG in prostate cancers
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

ERG overexpression is the most frequent molecular alteration in prostate cancer. We analyzed different stages of prostate cancer to identify genes that were coexpressed with ERG overexpression. In primary prostate tumors, it was shown that TDRD1 expression was the strongest correlated gene with ERG overexpression and we suggest TDRD1 as a direct ERG target gene.

Publication Title

Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE59745
Identification of novel long non-coding RNAs in prostate cancers
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Long non-coding RNAs show highly tissue and disease specific expression profiles. We analyzed prostate cancer and normal adjacent prostate samples to identify cancer-specific transcripts and found 334 candidates, of which 15 were validated by RT-PCR.

Publication Title

Novel long non-coding RNAs are specific diagnostic and prognostic markers for prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41407
Co-expression of genes with ERG in prostate cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

ERG overexpression is the most frequent molecular alteration in prostate cancer. We analyzed different stages of prostate cancer to identify genes that were coexpressed with ERG overexpression. In primary prostate tumors, it was shown that TDRD1 expression was the strongest correlated gene with ERG overexpression and we suggest TDRD1 as a direct ERG target gene.

Publication Title

Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE16659
Expression data of HGF/cMET pathway in prostate cancer DU145 cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DU145 prostate cancer cells were treated with 25 ng/ml hepatocyte growth factor (HGF) or vehicle for 2, 8, or 24 hours. HGF stimulates the cMET protein, a tyrosine kinase transmembrane protein.

Publication Title

Activation of c-MET induces a stem-like phenotype in human prostate cancer.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE48125
Neonatal antibotic prophylaxis modulates intestinal immunity and prevents necrotizing enterocolitis in preterm neonates
  • organism-icon Sus scrofa
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Caesarean-delivered preterm pigs were fed 3 d of parenteral nutrition followed by 2 d of enteral formula feeding. Antibiotics (n=11) or control saline (n=13) were given twice daily from birth to tissue collection at d 5. NEC-lesions and intestinal structure, function, microbiology and immunity markers were recorded.

Publication Title

Antibiotics modulate intestinal immunity and prevent necrotizing enterocolitis in preterm neonatal piglets.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE5287
Prediction of response and survival following chemotherapy in patients with advanced bladder cancer
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

BACKGROUND

Publication Title

Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE101185
VTA and NAC labeled ribosome from mPFC
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Projection-dependent ribosome profling from mouse mPFC.

Publication Title

Molecular and Circuit-Dynamical Identification of Top-Down Neural Mechanisms for Restraint of Reward Seeking.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42823
Specific sequence determinants of miR-15/107 microRNA gene group targets
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Using anti-Argonaute (anti-AGO) antibody co-immunoprecipitation, followed by microarray analyses and downstream bioinformatics, RIP-Chip experiments enable direct analyses of miRNA targets. The analyses support four major findings: (i) RIP-Chip studies correlated with total input mRNA profiling provides more comprehensive information than using either RIP-Chip or total mRNA profiling alone after miRNA transfections; (ii) new data confirm that miR-107 paralogs target coding sequence (CDS) of mRNA; (iii) biochemical and computational studies indicate that the 3 portion of miRNAs plays a role in guiding miR-103/7 to the CDS of targets; and (iv) there are major sequence-specific targeting differences between miRNAs in terms of CDS versus 3-untranslated region targeting, and stable AGO association versus mRNA knockdown. For detailed protocol and for full discussion of the results please see Nelson PT et al, Nucleic Acids Res. 2011 Oct;39(18):8163-72.

Publication Title

Specific sequence determinants of miR-15/107 microRNA gene group targets.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact