A non-functional myosin Vb motor in duodenal enterocytes results in disruption of epithelial cell polarity characterized by complete loss of microvilli and mislocalization of apical brush border proteins in the cytoplasm which finally cause a devastating disease in neonates with severe malabsorption defects accompanied by protracted diarrhea during infancy, classified as microvillus inclusion disease (MVID). The exact mechanisms how loss-of-function of MYO5B induces polarity loss are not completely understood in MVID pathogenesis. Obtaining better insights in cell polarity defects caused by loss of MYO5B, we performed microarray- in combination with protein expression-analysis in an inducible CaCo2 MYO5B RNAi cell system. Surprisingly, in MYO5B-depleted CaCo2 cells, CDH1 coding for the cell adhesion protein E-Cadherin and important for cell adhesion and therefore maintenance of cell polarity, was significantly downregulated. Interestingly, mesenchymal cell markers, specifically Vimentin and N-Cadherin, physiologically not expressed in differentiated epithelium, were upregulated and accompanied by increased phospho-c-jun levels in the nucleus. Importantly phospho-c-jun was also found in nuclei of duodenal enterocytes in MVID patients, indicating loss of MYO5B induces epithelial cell scattering in enterocytes.
Microvillus inclusion disease: loss of Myosin vb disrupts intracellular traffic and cell polarity.
Specimen part, Cell line
View SamplesBackground: Studies in mice have shown that PPAR is an important regulator of lipid metabolism in liver and a key transcription factor involved in the adaptive response to fasting. However, much less is known about the role of PPAR in human liver. Here we set out to study the function of PPAR in human liver via analysis of whole genome gene regulation in human liver slices treated with the PPAR agonist Wy14643.
The impact of PPARα activation on whole genome gene expression in human precision cut liver slices.
Sex, Specimen part, Treatment, Subject, Time
View SamplesLittle is known about the early transcriptional events in innate immune signaling in immature and tolerogenic monocyte-derived dendritic cells (DCs), the professional antigen-presenting cells of our immune system. TLR ligands usually induce a proinflammatory transcriptional response, whereas IL10 and/or dexamethasone induce a more tolerogenic phenotype.
MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters.
Specimen part
View SamplesExpression data from HT-29 human colon adenocarcinoma cells treated with IFN- for 24 hr
Simultaneous profiling of 194 distinct receptor transcripts in human cells.
Specimen part, Cell line
View SamplesExpression data from HT-29 cells treated with IFN- for 24 hr, MCF10A cells, and MDA-MB-436 cells.
Simultaneous profiling of 194 distinct receptor transcripts in human cells.
Specimen part, Cell line
View SamplesGENES ASSOCIATED WITH THE CELL CYCLE, LINEAGE COMMITMENT AND IMMUNOMODULATORY POTENTIAL DISCRIMINATE HUMAN POSTNATAL STEM CELLS OF DIFFERENT ORIGIN.
Functional differences between mesenchymal stem cell populations are reflected by their transcriptome.
No sample metadata fields
View SamplesIn this study we aimed to identify a baseline intrahepatic transcriptional signature associated with response in chronic hepatitis B patients treated with peginterferon-alfa-2a (peg-IFN) and adefovir.
An intrahepatic transcriptional signature of enhanced immune activity predicts response to peginterferon in chronic hepatitis B.
Specimen part, Disease, Disease stage
View SamplesThe objective of this study was to identify transcriptional changes differentially regulated by GDF11 stimulation compared to TGFB1
Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin.
Age, Specimen part, Cell line, Treatment, Time
View SamplesOne major class of anti-cancer drugs targets topoisomerase II to induce DNA double-strand breaks and cell death of fast growing cells. In vitro experiments showed that doxorubicin can induce histone eviction as well as DNA damage, while etoposide can only induce DNA damage. Here, we compare the transcription responses of different tissues to doxorubicin or etoposide treatment in vivo.
Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin.
Age, Specimen part, Treatment, Time
View Samples