refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 79 results
Sort by

Filters

Technology

Platform

accession-icon SRP158475
Transcriptome analysis of antigen-specific T follicular helper (Tfh) cells and non-Tfh cells
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To identify transcription factors critically involved in the Tfh cell transcriptional network, antigen-specific Tfh and non-Tfh cells from a day 8 immune response were analyzed by RNA-seq. Overall design: Ovalbumin-specific T cells from OT-II TCR-transgenic mice were transferred into C57BL/6 recipients, which were immunized subcutaneously with nitrophenol coupled to ovalbumin. Eight days after immunization, transgenic T cells from pooled inguinal lymph nodes were sorted for a CD44hi CXCR5+ PD-1+ Tfh and CD44hi CXCR5- PD-1- non-Tfh cell phenotype for analysis by RNA-seq.

Publication Title

Bach2 Controls T Follicular Helper Cells by Direct Repression of Bcl-6.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE49314
Gene expression of T follicular helper (TFH) cells 6 h after ICOS-L blockade
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The maintenance of the TFH phenotype depends on continuous signals via ICOS. For a global assessment of differences in gene expression after interruption of the ICOS pathway a genome wide transcriptome analysis was performed. We used the OT-II adoptive transfer system to isolate antigen-specific TFH cells (day 6 after immunization) after short-term (6 hours) blockade of the ICOS pathway using a monoclonal antibody against ICOS-L.

Publication Title

ICOS maintains the T follicular helper cell phenotype by down-regulating Krüppel-like factor 2.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE103458
Gene expression profiling of murine plasmocytes isolated from the spleen of IL-10eGFP mice infected with Salmonella
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The goal of this study was to identify the molecular characteristics and putative markers distinguishing IL-10eGFP+CD138hi and IL-10eGFP-CD138hi plasmocytes. To this end, IL-10eGFP B-green mice were challenged intravenously with Salmonella typhimurium (strain SL7207, 10e7 CFU), and IL-10eGFP+CD138hi as well as IL-10eGFP-CD138hi plasmocytes were isolated from the spleen on the next day. For this, single cell suspensions were prepared, cells were treated with Fc block (10 g/ml, anti-CD16/CD32, clone 2.4G2), and then stained with an antibody against CD138 conjugated to PE (1/400; from BD Pharmingen) followed by incubation with anti-PE microbeads (Miltenyi Biotech). CD138+ cells were then enriched on Automacs (Miltenyi Biotech) using the program possel_d2. Cells were then stained with anti-CD19-PerCP, anti-CD138-PE, and antibodies against CD11b, CD11c, and TCR conjugated to APC as a dump channel to exclude possible contaminants. DAPI was added to exclude dead cells. Live IL-10eGFP+CD138hi and IL-10eGFP-CD138hi cells were subsequently isolated on a cell sorter. The purity of the samples was always above 98%. This led to the identification of LAG-3 as a cell surface receptor specifically expressed on IL-10eGFP+CD138hi cells but not on IL-10eGFP-CD138hi cells.

Publication Title

LAG-3 Inhibitory Receptor Expression Identifies Immunosuppressive Natural Regulatory Plasma Cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE151041
Deciphering the molecular effects of non-ablative Er:YAG laser treatment in an in vitro model of the non-keratinized mucous membrane
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This study aimed to investigate the molecular effects of non-ablative Er:YAG laser treatment using an in vitro model of the non-keratinized mucous membrane and to compare its molecular effects with other ablative and non-ablative laser systems. In dermatology, the use of non-ablative and ablative fractional lasers has become the gold standard treatment for a number of indications. Each of the individual laser types is advantageous for different types of indications due to its respective properties, but new technologies open up new fields of application for individual laser systems. Performing a comprehensive gene expression profiling we compared the gene regulatory effects of non-ablative Er:YAG laser with other non-ablative and ablative laser systems. In vitro 3D models have proven to be a reliable and reproducible tool to study the molecular biological effects of different laser settings.

Publication Title

Deciphering the molecular effects of non-ablative Er:YAG laser treatment in an in vitro model of the non-keratinized mucous membrane.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE72551
Transcriptional changes in sensory ganglion associated with primary afferent collateral sprouting in spared dermatome model
  • organism-icon Rattus norvegicus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Primary afferent collateral sprouting (PACS) is a process whereby non-injured primary afferent neurons respond to some stimulus by extending new branches from existing axons. In the model used here (spared dermatome), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity. Investigations of gene expression changes associated with PACS can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatment for spinal cord injury to promote functional recovery.

Publication Title

Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE32171
Human Mesenchymal Stem Cells in Cardiomyocyte Co-Culture
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Evaluate the change in transcription factors that have a role in human mesenchymal stem cell (hMSC) commitment to a cardiomyocyte lineage when co-cultured for 4 days with rat neonatal cardiomyocytes and before acquiring a recognizable cardiac phenotype.

Publication Title

Calcium dependent CAMTA1 in adult stem cell commitment to a myocardial lineage.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE18738
Bovine Hypertrophic Growth Plate Chondrocytes vs. Reserve Zone Chondrocytes
  • organism-icon Bos taurus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Growth plate chondrocytes were isolated from the distal metacarpus of young dairy cattle (all under 10 mo of age), the chondrocytes were released from the extracellular matrix by digestion with Collagenase P for 4 hours, and the various zones of the growth plate were separated by density centrifugation. The least-dense Hypertrophic Zone (HZ) cells were compared to the most-dense Reserve Zone (RZ) cells. 6 pairs of HZ vs RZ were compared by microarray.

Publication Title

SCF, BDNF, and Gas6 are regulators of growth plate chondrocyte proliferation and differentiation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP015771
Population and sex differences in Drosophila melanogaster brain gene expression
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Background: Changes in gene regulation are thought to be crucial for the adaptation of organisms to their environment. Transcriptome analyses can be used to identify candidate genes for ecological adaptation, but can be complicated by variation in gene expression between tissues, sexes, or individuals. Here we use high-throughput RNA sequencing of a single Drosophila melanogaster tissue to detect brain-specific differences in gene expression between the sexes and between two populations, one from the ancestral species range in sub-Saharan Africa and one from the recently colonized species range in Europe. Results: Relatively few genes (<100) displayed sexually dimorphic expression in the brain, but there was an enrichment of sex-biased genes, especially male-biased genes, on the X chromosome. Over 340 genes differed in brain expression between flies from the African and European populations, with the between-population divergence being highly correlated between males and females. The differentially expressed genes include those involved in stress response, olfaction, and detoxification. Expression differences were associated with transposable element insertions at two genes implicated in insecticide resistance (Cyp6g1 and CHKov1). Conclusions: Analysis of the brain transcriptome revealed many genes differing in expression between populations that were not detected in previous studies using whole flies. There was little evidence for sex-specific regulatory adaptation in the brain, as most expression differences between populations were observed in both males and females. The enrichment of genes with sexually dimorphic expression on the X chromosome is consistent with dosage compensation mechanisms affecting sex-biased expression in somatic tissues. Overall design: mRNA profiles of Drosophila melanogaster brains from adult males and females from a European and an African population (2 biological replicates each)

Publication Title

Population and sex differences in Drosophila melanogaster brain gene expression.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon SRP007864
Transcriptome changes in IL-10 treated peritoneal macrophages
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To try to identify the mechanism of STAT3s indirect action we have used a genomic approach to map the binding sites of STAT3 within the genome and also used RNA-seq technology to map the changes in RNA expression and transcript isoform abundance in response to IL-10. Overall design: Examination of transcriptome changes in peritoneal macrophages when treated with IL-10 for 4 hours. RNA was extracted and sequenced.

Publication Title

Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP069083
Canalization of gene expression is a major signature of regulatory cold adaptation in temperate "Drosophila melanogaster"
  • organism-icon Drosophila melanogaster
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome analysis may provide means to investigate the underlying genetic causes of shared and divergent phenotypes in different populations and help to identify potential targets of adaptive evolution. Applying RNA sequencing to whole male Drosophila melanogaster from the ancestral tropical African environment and a very recently colonized cold-temperate European environment at both standard laboratory conditions and following a cold shock, we seek to uncover the transcriptional basis of cold adaptation. In both the ancestral and the derived populations, the predominant characteristic of the cold shock response is the swift and massive upregulation of heat shock proteins and other chaperones. Although we find ~30% of the genome to be differentially expressed following a cold shock, only relatively few genes (n=26) are up- or down-regulated in a population-specific way. Intriguingly, 24 of these 26 genes show a greater degree of differential expression in the African population. Likewise, there is an excess of genes with particularly strong cold-induced changes in expression in Africa on a genome-wide scale. The analysis of the transcriptional cold shock response most prominently reveals an upregulation of components of a general stress response, which is conserved over many taxa and triggered by a plethora of stressors. Despite the overall response being fairly similar in both populations, there is a definite excess of genes with a strong cold-induced fold-change in Africa. This is consistent with a detrimental deregulation or an overshooting stress response. Thus, the canalization of European gene expression might be responsible for the increased cold tolerance of European flies. Overall design: mRNA profiles of whole Drosophila melanogaster adult males from a Africa (4 lines) and Europe (4 lines) during a 7h cold shock experiment. Samples include room temperature controls, 3.5h into the cold shock, 15 minutes after recovery and 90 minutes after recovery. 2 biological replicates each.

Publication Title

Canalization of gene expression is a major signature of regulatory cold adaptation in temperate Drosophila melanogaster.

Sample Metadata Fields

Sex, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact