Transcriptional profiles of Escherichia coli MG1655 in mixed culture with Pseudomonas aeruginosa PAO1 showed a number of E. coli genes to be upregulated including purA-F and other genes associated with purine synthesis. In contrast, genes associated with pyrimidine synthesis were unaffected. Competition experiments in both planktonic and biofilm cultures, using three purine synthesis mutants, purD, purH, and purT showed little difference in E. coli survival from the parent strain. As purines are components of the cell signals, cAMP and c-di-GMP, we conducted competition experiments with E. coli mutants lacking adenylate cyclase (cyaA), cAMP phosphodiesterase (cpdA), and the catabolite receptor protein (crp), as well as ydeH, an uncharacterized gene that has been associated with c-di-GMP synthesis. Survival of the cyaA and crp mutants during co-culture were significantly less than the parent strain. Supplementation of the media with 1mM cAMP could restore survival of the cyaA mutant but not the crp mutant. In contrast, survival of the cpdA mutant was similar to the parent strain. Survival of the ydeH mutant was moderately less than the parent, suggesting that cAMP has more impact on E. coli mixed culture growth than c-di-GMP. Addition of 1 mM indole restored the survival of both the cyaA and crp mutations. Mutants in genes for tryptophan synthesis (trpE) and indole production (tnaA) showed a loss of competition and recovery through indole supplementation, comparable to the cyaA and crp mutants. Overall, these results suggest indole and cAMP as major contributing factors to E. coli growth in mixed culture.
Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling.
No sample metadata fields
View SamplesTranscriptional profiles of Escherichia coli MG1655 in mixed culture with Pseudomonas aeruginosa PAO1 showed a number of E. coli genes to be upregulated including purA-F and other genes associated with purine synthesis. In contrast, genes associated with pyrimidine synthesis were unaffected. Competition experiments in both planktonic and biofilm cultures, using three purine synthesis mutants, purD, purH, and purT showed little difference in E. coli survival from the parent strain. As purines are components of the cell signals, cAMP and c-di-GMP, we conducted competition experiments with E. coli mutants lacking adenylate cyclase (cyaA), cAMP phosphodiesterase (cpdA), and the catabolite receptor protein (crp), as well as ydeH, an uncharacterized gene that has been associated with c-di-GMP synthesis. Survival of the cyaA and crp mutants during co-culture were significantly less than the parent strain. Supplementation of the media with 1mM cAMP could restore survival of the cyaA mutant but not the crp mutant. In contrast, survival of the cpdA mutant was similar to the parent strain. Survival of the ydeH mutant was moderately less than the parent, suggesting that cAMP has more impact on E. coli mixed culture growth than c-di-GMP. Addition of 1 mM indole restored the survival of both the cyaA and crp mutations. Mutants in genes for tryptophan synthesis (trpE) and indole production (tnaA) showed a loss of competition and recovery through indole supplementation, comparable to the cyaA and crp mutants. Overall, these results suggest indole and cAMP as major contributing factors to E. coli growth in mixed culture.
Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling.
No sample metadata fields
View SamplesTo explore the primary cause of Dilated Cardiomyopathy in heart samples from DCM-diagnosed patients who had undergone heart transplant (hDCM), we set out to identify differentially expressed genes by massively parallel sequencing of heart samples. Overall design: Methods: Heart mRNA profiles from DCM-diagnosed patients who had undergone heart transplant (hDCM) were generated by deep sequencing, in triplicate, using Illumina GAIIx.
Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.
No sample metadata fields
View SamplesTo explore the primary cause of Dilated Cardiomyopathy in Bmi1-null mice, we set out to identify differentially expressed genes by massively parallel sequencing of heart samples from Bmi1f/f;aMHCTM-Cretg/+ mice versus aMHCTM-Cretg/+ control mice (17 weeks postinduction). Overall design: Methods: Heart mRNA profiles of 17-weeks post-induction Bmi1f/f; MHCTM-Cretg/+ mice and MHCTM-Cretg/+ control mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. Sequence reads were pre-processed with Cutadapt 1.2.1, to remove TruSeq adapters and mapped on the mouse transcriptome (Ensembl gene-build GRCm38.v70) using RSEM v1.2.3. The Bioconductor package EdgeR was used to normalize data with TMM and to test for differential expression of genes using GLM.
Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.
No sample metadata fields
View SamplesSubstantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease. However, ventral tegmental area (VTA), a region adjacent to SNpc, is less affected in PD. Until now, molecular mechanisms behind VTA aging have not been fully investigated using high throughput techniques.
Age-mediated transcriptomic changes in adult mouse substantia nigra.
Specimen part
View SamplesSubstantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease. Until now, molecular mechanisms behind SNpc aging have not been fully investigated using high throughput techniques.
Age-mediated transcriptomic changes in adult mouse substantia nigra.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Age-mediated transcriptomic changes in adult mouse substantia nigra.
Specimen part
View SamplesImpaired DNA replication is a hallmark of cancer and a cause of genomic instability. We report that, in addition to causing genetic change, impaired DNA replication during embryonic development can have major epigenetic consequences for a genome. In a genome-wide screen, we identified impaired DNA replication as causing increased expression from a repressed transgene in Caenorhabditis elegans. The acquired expression state behaved as an “epiallele,” being inherited for multiple generations before fully resetting. Derepression was not restricted to the transgene but was caused by a global reduction in heterochromatin-associated histone modifications due to the impaired retention of modified histones on DNA during replication in the early embryo. Impaired DNA replication during development can therefore globally derepress chromatin, creating new intergenerationally inherited epigenetic expression states. Overall design: 3 replicates of div-1 mutant worms and N2 wild type worms
Impaired DNA replication derepresses chromatin and generates a transgenerationally inherited epigenetic memory.
Specimen part, Subject
View SamplesTriple negative breast cancer (TNBC) represents a challenging tumor type due to their poor prognosis and limited treatment options. It is well recognize that clinical and molecular heterogeneity of TNBC is driven in part by mRNA and lncRNAs. To stratify TNBCs, we profiled mRNAs and lncRNA in 158 adjuvant TNBC tumors using an Affymetrix microarray platform. Lehmann clustering analysis allowed us to identify TNBC subtypes featuring unique lncRNA expression patterns, disease free and overall survival rates and particular gene ontology enrichments (performed with GSEA algorithm).
Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer.
Specimen part
View SamplesTriple negative breast cancer (TNBC) represents a challenging tumor type due to their poor prognosis and limited treatment options. It is well recognize that clinical and molecular heterogeneity of TNBC is driven in part by mRNA and lncRNAs. To stratify TNBCs, we profiled mRNAs and lncRNA in 158 adjuvant TNBC tumors using an Affymetrix microarray platform. Lehmann clustering analysis allowed us to identify TNBC subtypes featuring unique lncRNA expression patterns, disease free and overall survival rates and particular gene ontology enrichments (performed with GSEA algorithm).
Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer.
Specimen part
View Samples