refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 183 results
Sort by

Filters

Technology

Platform

accession-icon GSE14537
Contribution of sequence and structure to mRNA-binding of Argonaute/miRNA complexes and degradation of miRNA targets
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Relative contribution of sequence and structural features to the mRNA-binding of Argonaute/miRNA complexes and the degradation of miRNA targets

Publication Title

Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP006474
A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins (CLIP)
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Crosslinking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins (RBPs). We developed a method for CLIP data analysis and applied it to compare 254 nm CLIP with PAR-CLIP, which involves crosslinking of photoreactive nucleotides with 365 nm UV light. We found small differences in the accuracy of these methods in identifying binding sites of HuR, a protein that binds low-complexity sequences and Argonaute 2, which has a complex binding specificity. We show that crosslink-induced mutations lead to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect sufficiently their sites under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific ribonucleases strongly biases the set of recovered binding sites. We finally show that this bias can be substantially reduced by milder nuclease digestion conditions. Overall design: We performed duplicate experiments for each variant of the CLIP protocol (CLIP, PAR-CLIP), each protein (HuR, Ago2), and enzymatic digestion (complete T1 digestion, mild MNase digestion). In addition, we performed a single PAR-CLIP experiment with mild T1 digestion.

Publication Title

A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18946
Apoptosis regulation by Kaposis sarcoma microRNAs
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Herpesviruses are known to encode micro (mi)RNAs and to use them to regulate the expression of both viral and cellular genes. The genome of Kaposis sarcoma herpesvirus (KSHV) encodes a cluster of twelve miRNAs, which are abundantly expressed during both latency and lytic infection. Relatively few cellular targets of KSHV miRNAs are known. Here, we used a microarray expression profiling approach to analyze the transcriptome of both B lymphocytes and endothelial cells stably expressing KSHV miRNAs and monitor the changes induced by the presence of these miRNAs. We generated a list of potential cellular targets by looking for miRNA seed-match-containing transcripts that were significantly down regulated upon KSHV miRNAs expression. Interestingly, the overlap of putative targets identified in B lymphocytes and endothelial cells was minimal, suggesting a tissue-specific target-regulation by viral miRNAs. Among the putative targets, we identified caspase 3, a critical factor for the control of apoptosis, which we validated using luciferase reporter assays and western blotting. In functional assays we obtained further evidence that KSHV miRNAs indeed protect cells from apoptosis.

Publication Title

Kaposi's sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE48195
miR-7a is regulated in beta-cell dysfunction and couples early and late stages of pancreatic beta-cell differentiation to insulin secretion
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptional and posttranscriptional regulatory networks play a crucial role in the maintenance and adaptation of pancreatic beta-cell function. In this study we show that the levels of the prototypic neuroendocrine miRNA-7 are regulated in islets of obese, diabetic and aged mouse models. Using gain- and loss-of-function models we demonstrate that miR-7 regulates crucial members of the endocrine pancreatic transcriptional network controlling differentiation and insulin synthesis. Importantly, it also directly regulates key proteins in the insulin granule secretory machinery. These results reveal an interconnecting miR-7 genomic circuit that influences beta-cell differentiation, insulin synthesis and release and define a role for miR-7 as an endocrine checkpoint to stabilize beta-cell function during metabolic stress. These findings have implications for miR-7 inhibitors as potential therapies for type 2 diabetes and neurodegenerative diseases.

Publication Title

MicroRNA-7a regulates pancreatic β cell function.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE21578
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE21574
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP: QKI data
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To assess whether the transcripts identified by PAR-CLIP are regulated by the RNA-binding protein (RBP) Quaking (QKI), we analyzed the mRNA levels of mock-transfected and QKI-specific siRNA-transfected cells with microarrays. Transcripts crosslinked to QKI were significantly upregulated upon siRNA transfection, indicating that QKI negatively regulates bound mRNAs (Figure 3H of PMID 20371350), consistent with previous reports of QKI being a repressor.

Publication Title

Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE21575
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP: IGF2BP data
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To test the influence of IGF2BPs on the stability of their interacting mRNAs, as reported previously for some targets (Yisraeli, 2005), we simultaneously depleted all three IGF2BP family members using siRNAs and compared the cellular RNA from knockdown and mock-transfected cells on microarrays. The levels of transcripts identified by PAR-CLIP decreased in IGF2BP-depleted cells, indicating that IGF2BP proteins stabilize their target mRNAs. Moreover, transcripts that yielded clusters with the highest T to C mutation frequency were most destabilized (Figure 4G of PMID 20371350), indicating that the ranking criterion that we derived based on the analysis of PUM2 and QKI data generalizes to other RNA-binding proteins (RBPs).

Publication Title

Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE21577
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP: miRNA inhibition data
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To obtain evidence that Argonaute (AGO) crosslink-centered regions (CCRs) indeed contain functional miRNA-binding sites, we blocked 25 of the most abundant miRNAs in HEK 293 cells (Figure 5C of PMID 20371350) by transfection of a cocktail of 2'-O-methyl-modified antisense oligoribonucleotides and monitored the changes in mRNA stability by microarrays (Figure 7A of PMID 20371350). Consistent with previous studies of individual miRNAs (Grimson et al., 2007), the magnitude of the destabilization effects of transcripts containing at least one CCR depended on the length of the seed-complementary region and dropped from 9-mer to 8-mer to 7-mer to 6-mer matches (Figure 7B of PMID 20371350). We did not find evidence for significant destabilization of transcripts that only contained imperfectly paired seed regions.

Publication Title

Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.

Sample Metadata Fields

Cell line

View Samples
accession-icon E-MEXP-1312
Transcription profiling by array of Drosophila mutant for ewg
  • organism-icon Drosophila melanogaster
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Ewg differentially regulated genes in 16-18 h Drosophila embryos. The experiment contains expression measurements from wild type, ewg l1 protein null allele and ewg l1 elavEWG (elavEWG rescue construct expressing a ewg cDNA from the elav promoter) mutants.

Publication Title

Erect wing regulates synaptic growth in Drosophila by integration of multiple signaling pathways.

Sample Metadata Fields

Age

View Samples
accession-icon SRP071313
Analysis of differential gene expression in Drosophila dIME4 null mutants [single-end]
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Methylation of mRNA at the N6 position of adenosin is known for a long time, but its function remains poorly understood. Here generated a null mutant in the catalytic subunit of the m6A mRNA methylosome, dIME4, in Drosophila to determine the impact of loss of m6A on gene expression using Illumina sequencing. Overall design: Since dIME4 is preferentially expressed in the nervous system and dIME4 null mutants are viable, we compared gene expression and alternative splicing in wild type (2 samples) and dIME4 mutants (3 samples) with genetic background matched w control females in neuron enriched head/thorax.

Publication Title

m<sup>6</sup>A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact