refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1002 results
Sort by

Filters

Technology

Platform

accession-icon SRP066363
Characterization of parental and rociletinib-resistant derived H1975 cell lines
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Through development of an in vivo orthotopic lung cancer model, we reveal an unanticipated pathway driving spontaneous metastasis that is orchestrated by the developmentally-regulated transcriptional repressor, Capicua (CIC). Overall design: RNAseq and DNA copy number analysis of H1975 (EGFR-mutant lung adenocarcinoma) cells in the context of drug resistance to rociletinib

Publication Title

Inactivation of Capicua drives cancer metastasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53957
Transcriptomic profiling of Arabidopsis exposed to E-2-hexenal
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plants are known to be responsive to volatiles, but knowledge about the molecular players involved in transducing their perception remain scarce.

Publication Title

WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE50529
PhoB Activates Escherichia coli O157:H7 Virulence Factors in Response to Inorganic Phosphate Limitation
  • organism-icon Escherichia coli
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

In E. coli the phosphate homeostasis is regulated by the Pst system and the two-component system PhoB/R. Pathogens like E. coli O157:H7 are responsible for many outbreaks and can be found and survive in poor inorganic phosphate (Pi) environments.

Publication Title

PhoB activates Escherichia coli O157:H7 virulence factors in response to inorganic phosphate limitation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49650
Checkpoints Couple Transcription Network Oscillator Dynamics to Cell-Cycle Progression
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 127 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Yeast cell cycle transcript dynamics in three S. cerevisiae strains grown at 30 degrees Celsius: cdc20 GALL-CDC20 (persistent mitotic CDK activity; CDK on), cdc8-ts (DNA replication checkpoint), GAL-cse4-353 (spindle assembly checkpoint), cdc8-ts cdc20 (DNA replication checkpoint, CDK on), and cdc8-ts cdc20, rad53-1 (DNA replication checkpoint without Rad53 activity, CDK on) in a BF264-15DU background. We compared transcript levels of genes previously shown to be periodically expressed in wild-type cells and in cells lacking all mitotic cyclins (clb1,2,3,4,5,6; CDK off).

Publication Title

Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13122
The Effect of Translocation-Induced Nuclear Re-organization on Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To study the effect of balanced chromosomal rearrangements on gene expression, we compared the transcriptomes of cell lines from control and t(11;22)(q23;q11) individuals. This translocation between chromosomes 11 and 22 is the only recurrent constitutional non-Robertsonian translocation in humans. The number of differentially expressed transcripts between the translocated and control cohort is significantly higher than that observed between control samples alone, suggesting that balanced rearrangements have a greater effect on gene expression than normal variation. Altered expression is not limited to genes close to the translocation breakpoint suggesting that a long-range effect is operating. Indeed we show that the nuclear position of the derivative chromosome is altered compared to the normal chromosomes. Our results are consistent with recent studies that indicate a functional role for nuclear position in regulating the expression of some genes in mammalian cells. They may also have implications on reproductive separation, as we show that reciprocal translocations not only provide partial isolation for speciation but also significant changes in transcriptional regulation through alteration of nuclear chromosomes territories.

Publication Title

The effect of translocation-induced nuclear reorganization on gene expression.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE65435
MiR-30e in Aortic Smooth Muscle Cells and Bone Marrow Mesenchymal Stem Cells
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE-/- mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE7069
Zfx controls the self-renewal of embryonic and hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Stem cells (SC) exhibit a unique capacity for self-renewal in an undifferentiated state. It is unclear whether the self-renewal of pluripotent embryonic SC (ESC) and of tissue-specific adult SC such as hematopoietic SC (HSC) is controlled by common mechanisms. The deletion of transcription factor Zfx impaired the self-renewal but not the differentiation capacity of murine ESC; conversely, Zfx overexpression facilitated ESC self-renewal by opposing differentiation. Furthermore, Zfx deletion abolished the maintenance of adult bone marrow HSC, but did not affect erythromyeloid progenitors or fetal HSC. In both ESC and HSC, Zfx activated a common set of direct target genes. In addition, the loss of Zfx resulted in the induction of immediate-early and/or stress-inducible genes in both SC types but not in their differentiated progeny. These studies identify the first shared transcriptional regulator of ESC and HSC, suggesting a common molecular basis of self-renewal in embryonic and adult SC.

Publication Title

Zfx controls the self-renewal of embryonic and hematopoietic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9178
Genome-wide transcriptional response of an Avian Pathogenic Escherichia coli (APEC) Pst Mutant
  • organism-icon Escherichia coli
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Many reports show an association between the Pst system, the Pho regulon related genes and bacterial virulence. Our previous results showed that a functional Pst system is required for full virulence, resistance to serum, polymyxin B and acid shock. However, the interplay between the Pst system and virulence has an unknown molecular basis. To understand global APEC virulent strain responses to Pho regulon activation, we conducted transcriptome profiling experiments comparing the APEC chi7122 strain and its isogenic Pst mutant grown in rich phosphate medium using the Affymetrix GeneChip E. coli Genome 2.0 Array. The Affymetrix GeneChip E. coli Genome 2.0 Array contains the genome of the E. coli MG1655 and three pathogenic E. coli strain (EDL933, Sakai and CFT073) representing 20,366 genes. While comparing genes expression between Pst mutant and the wild type chi7122 strain, 471 genes are either up- (254) or down-regulated (217) of at least 1.5-fold, with a p-value inferior or equal to 0.05 and a false discovery rate of 2.71%.

Publication Title

Genome-wide transcriptional response of an avian pathogenic Escherichia coli (APEC) pst mutant.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE65432
MiR-30e in Aortic Smooth Muscle Cells and Bone Marrow Mesenchymal Stem Cells [Experiment 2]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

MiR-30e represses the osteogenic program in mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs) by targeting IGF2, and drives their differentiation into adipogenic or smooth muscle lineage, respectively.

Publication Title

miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE-/- mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE65431
MiR-30e in Aortic Smooth Muscle Cells and Bone Marrow Mesenchymal Stem Cells [Experiment 1]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

MiR-30e represses the osteogenic program in mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs) by targeting IGF2, and drives their differentiation into adipogenic or smooth muscle lineage, respectively.

Publication Title

miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE-/- mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact