refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 924 results
Sort by

Filters

Technology

Platform

accession-icon GSE15822
High-fat diet leads to tissue-specific changes reflecting risk factors for diseases in DBA/2J mice
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchip

Description

Analysis of tissues of DBA/2 mice fed a standard breeding diet (SBD) and high fat diet (HFD) revealed tissue specific roles in inflammation and disease, and altered communication between tissues. The tissues surveyed incuded adipose tissues (brown, inguinal, mesenteric, retro-peritoneal, subcutaneious and gonadal), muscle and liver.

Publication Title

High-fat diet leads to tissue-specific changes reflecting risk factors for diseases in DBA/2J mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE113423
Differentiation-dependent regulation of human endogenous retrovirus K sequences and neighbouring genes in germ cell tumour cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

By using high-density DNA microarrays, we analyzed the gene-expression profile in a panel of germ cell tumour cell lines

Publication Title

Differentiation-Dependent Regulation of Human Endogenous Retrovirus K Sequences and Neighboring Genes in Germ Cell Tumor Cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP186159
Effect of DKK1 on embryo elongation
  • organism-icon Bos taurus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

We report the effect of DKK1 treatment during culture on the length and transcriptome of embryos on day 15 of development, supporting the notion that changes early in development affect later stages of development. Overall design: Bovine embryos were produced in vitro and exposed to either 0 or 100 ng/ml DKK1 from day 5 to 7 of culture. Embryos were transferred on day 7 and recovered on day 15 for evaluation of length and transciptome

Publication Title

Dickkopf-related protein 1 is a progestomedin acting on the bovine embryo during the morula-to-blastocyst transition to program trophoblast elongation.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE21266
Effect of Ursodeoxycholic acid on gene expression in the intestial epithelium
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Background & Aims: Ursodeoxycholic acid (UDCA) attenuates chemical and colitis-induced colon carcinogenesis in animal models. We investigated its mechanism of action on normal intestinal cells, in which carcinogenesis- or inflammation-related alterations do not interfere with the result. Methods: Alterations of gene expression were identified in Affymetrix arrays in isolated colon epithelium of mice fed with a diet containing 0.4% UDCA and were confirmed in the normal rat intestinal cell line IEC-6 by RT-PCR. The effect of the insulin receptor substrate 1 (Irs-1) expression and of ERK phosphorylation on proliferation was investigated in vitro by flow cytometry, western blotting, siRNA-mediated gene suppression or by pharmacological inhibition of the kinase activity. The ERK1-effect on Irs-1 transcription was tested in a reporter system. Results: UDCA-treatment in vivo suppressed potential pro-proliferatory genes including Irs-1 and reduced cell proliferation by more than 30%. In vitro it neutralised the proliferatory signals of IGF-1 and EGF and slowed down the cell cycle. Irs-1 transcription was suppressed due to high ERK1 activation. Both Irs-1 suppression and the persistent high ERK activation inhibited proliferation. Conversely, the decrease of phosphorylation of ERK1 (but not ERK2) or of its expression partially abrogated the inhibitory effects of UDCA. Conclusions: UDCA inhibits proliferation of intestinal epithelial cells by acting upon IGF-1 and EGF pathways and targeting ERK1 and, consequently, Irs-1. The inhibition of these pathways adds a new dimension to the physiological and therapeutic action of UDCA and, since both pathways are activated in inflammation and cancer, suggests new applications of UDCA in chemoprevention and chemotherapy.

Publication Title

UDCA slows down intestinal cell proliferation by inducing high and sustained ERK phosphorylation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE83129
RNA profiling in metastatic colorectal cancer patients treated first-line with oxaliplatin
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Oxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Here, we have used in vitro models to show that miR-625-3p functionally induces oxPt resistance in CRC cells, and have identified signalling networks affected by miR-625-3p. The p38 MAPK activator MAP2K6 was shown to be a direct target of miR-625-3p, and, accordingly, was downregulated in patients not responding to oxPt therapy. miR-625-3p resistance could be reversed in CRC cells by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. In addition, by reducing p38 MAPK signalling using either siRNA technology, chemical inhibitors to p38 or by ectopic expression of dominant negative MAP2K6 protein we induced resistance to oxPt. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signalling as one likely mechanism a possible driving force behind of oxPt resistance. Our study shows that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p

Publication Title

miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE48853
Expression data of PGR isoforms, PRA and PRB, regulated genes in differentiating human endometrial stromal cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

gene expression at 6h of differentiation of Human endometrial stromal cell expressing either or both of PRA and PRB

Publication Title

Roles of progesterone receptor A and B isoforms during human endometrial decidualization.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE57195
Loss of Runx3 in osteoblasts provokes severe congenital osteopenia
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Murine Runx3 is expressed in developing bone osteoblasts (OBLs) and its deletion in these cells culminates in severe congenital osteopenia. We demonstrate that Runx3 is non-redundantly involved in the proliferation of early pre-committed OBL progenitor cells, a critical step in the generation of adequate numbers of bone-forming OBLs. Thus, in the absence of Runx3 in cells of this lineage, the number of mature/active OBLs is significantly diminished, providing a mechanistic explanation to the observed osteopenia.

Publication Title

Loss of osteoblast Runx3 produces severe congenital osteopenia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48591
Runx3 regulated genes in splenic CD4+ dendritic cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptional reprogramming of CD11b+Esam(hi) dendritic cell identity and function by loss of Runx3.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE48589
Runx3 function in CD4+ splenic dendritic cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

CD4+ dendritic cells are part of the innate immunity essential for priming and activating of CD4+ T cells

Publication Title

Transcriptional reprogramming of CD11b+Esam(hi) dendritic cell identity and function by loss of Runx3.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE48590
The affect of specific ablation of Runx3 from Esam splenic dendritic cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Esam/CD4+ dendritic cells are part of the innate immunity essential for priming and activating of CD4+ T cells

Publication Title

Transcriptional reprogramming of CD11b+Esam(hi) dendritic cell identity and function by loss of Runx3.

Sample Metadata Fields

Sex, Age

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact