refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 382 results
Sort by

Filters

Technology

Platform

accession-icon GSE21001
Infection of MK2 cells with monkeypox virus
  • organism-icon Macaca mulatta
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Orthopox viruses, including monkeypox, multiply intracellularly and induce numerous changes in host genes expression. The virus target mainly humoral host response, and simultaneously, exploits other genes and functions to reproduce effectively. The goal of this experiment is to identify those host genes and functions that are essential for monkeypox virus replication.

Publication Title

Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5790
Primate blood signs of arenavirus hemorrhagic fever
  • organism-icon Macaca mulatta
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Lassa fever virus is a zoonotic pathogen that plagues the endemic areas of West Africa. Rhesus macaques infected with a related arenavirus, LCMV-WE, serve as a model for Lassa-infection of human beings. Using a dose similar to that expected from a needle-stick, monkeys experience an early pre-viremic phase (day 1-3), a viremic phase with febrile onset (day 4-7), and, like human beings who succumb, they die within two weeks. Our goal was to monitor changes in gene expression that parallel disease progression in an effort to 1) identify genes with altered expression after infection, 2) identify genes that could discriminate between a virulent and non-virulent infection, and 3) identify genes encoding products that could serve as treatment targets for FDA-approved pharmaceuticals. Genes related to all three of these categories have been identified and some have been given preliminary validation by quantitative PCR and proteomic studies. These genes will be valuable candidates for future validation as prognostic biomarkers

Publication Title

Early blood profiles of virus infection in a monkey model for Lassa fever.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE106260
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE103374
Gene expression assessed by genome wide hybridization bead array in T84 polarized tight monolayers after challenge with celiac disease-associated bacteria and gluten [CTR glut bmix, bmix and gluten]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of the influence of celiac disease-associated bacteria and gluten on intestinal epithelial cells

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE103100
Gene expression assessed by genome wide hybridization bead array in T84 polarized tight monolayers after challenge with celiac disease-associated bacteria and gluten [A grav, Bmix Bmix glut]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of the influence of celiac disease-associated bacteria and gluten on intestinal epithelial cells

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE103107
Gene expression assessed by genome wide hybridization bead array in T84 polarized tight monolayers after challenge with celiac disease-associated bacteria [CTR 22 28 27]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of the influence of celiac disease-associated bacteria on intestinal epithelial cells

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE102993
Gene expression assessed by genome wide hybridization bead array in intraepithelial lymphocytes (IELs) isolated from small intestinal biopsies of celiac disease patients with active disease and clinical controls
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Analysis of role of small intestinal intraepithelial lymphocytes (IELs) in the immunopathology of celiac disease

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE102991
Gene expression assessed by genome wide hybridization bead array in intestinal epithelial cells (IECs) isolated from small intestinal biopsies of celiac disease patients with active disease and clinical controls
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Analysis of role of small intestinal epithelial cells (IECs) in the immunopathology of celiac disease

Publication Title

Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20967
Gene expression profiling of vasoregression in the retina
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Vasoregression is a hallmark of vascular eye diseases but the mechanisms involved are still largely unknown. We have recently characterized a rat ciliopathy model which develops primary photoreceptor degeneration and secondary vasoregression. To improve the understanding of secondary vasoregression in retinal neurodegeneration, we used microarray techniques to compare gene expression profiles in this new model before and after retinal vasoregression. Differential gene expression was validated by quantitative RT-PCR, Western blot and immunofluorescence. Of the 374 genes regulated more than twofold, the MHC class II invariant chain CD74 yielded the strongest upregulation, and was allocated to activated microglial cells close to the vessels undergoing vasoregression. Pathway clustering identified genes of the immune system, inflammatory signaling, and components of the complement cascade upregulated during vasoregression. Furthermore, macroglial cells were markedly activated. Together, our data suggest that glial cells involved in retinal immune response participate in the initiation of vasoregression in the retina.

Publication Title

Gene expression profiling of vasoregression in the retina--involvement of microglial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE829
Laminin binding/non-binding germ cells
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2), Affymetrix Murine Genome U74A Array (mgu74a)

Description

Comparison of laminin binding and laminin non-binding germ cells

Publication Title

Defining the spermatogonial stem cell.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact