refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 872 results
Sort by

Filters

Technology

Platform

accession-icon GSE36876
affy_cotton_2011_12 - Comparative transcriptional profiling of cotton fibers in Gossypium hirsutum and Gossypium barbadense using EST pyrosequencing and microarray hybridization
  • organism-icon Gossypium barbadense, Gossypium hirsutum
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Cotton Genome Array (cotton)

Description

affy_cotton_2011_12 - affy_cotton_2011_12 - In this study we characterized the fiber transcriptomes of the two species, Gossypium hirsutum and Gossypium barbadense that were parental genotypes of a RIL mapping population used previously for phenotypic QTL and expression QTL mapping., We used 454 deep pyrosequencing to characterize cDNAs from developing fibers at two key developmental time-points; 10 and 22 days post anthesis. A unigene set was assembled and annotated, and differential digital gene expression was assessed from the different time-point and genotype representations of the reads within assembled contigs. As a complementary approach, we conducted microarray-based hybridization profiling using the cotton Affymetrix gene chip and labeled cDNAs from fibers at 11 dpa and for the same two genotypes and compared differentially expressed genes identified by the two platforms. The 454 unigenes were also mined for the presence of microsatellite repeats and SNPs that will be useful markers for mapping and marker-assisted selection in cotton improvement.-Total RNA was extracted from 11 dpa-old fibers from the two genotypes, Guazuncho 2 (Gossypium hirsutum) and VH8-4602 (G. barbadense), and included two replicates of each. RNA was checked for quality and quantity using an Agilent Bioanalyser 2100 (Agilent Technologies, Santa Clara, CA, USA, http://www.home.agilent.com) following the manufacturers recommendations. The RNA was sent to the Australian Genome Research Facility Ltd. (http://www.agrf.org.au, Melbourne, Victoria, Australia) for labeling and hybridization to the Affymetrix Genechip Cotton Genome Array (21,854 genes) (Affymetrix, http://www.affymetrix.com/). -

Publication Title

Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE32277
Kras is required for pancreatic tumor maintenance through regulation of hexosamine biosynthesis and the non-oxidative pentose phosphate pathway
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The maintenance of advanced malignancies relies on continued activity of driver oncogenes, although their rate-limiting role is highly context-dependent with respect to tumor types and associated genetic alterations. Oncogenic Kras mutation is the signature event in human pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible KrasG12D-driven p53 mutant PDAC mouse model establishes that advanced PDAC remains strictly dependent on continued KrasG12D expression and that KrasG12D serves a vital role in the control of tumor metabolism, through stimulation of glucose uptake and channeling of glucose intermediates through the hexosamine biosynthesis pathway (HBP) and the pentose phosphate pathway (PPP). Notably, these studies reveal that oncogenic Kras regulates ribose biogenesis. Unlike canonical models of PPP-mediated ribose biogenesis, we demonstrate that oncogenic Kras drives intermediates from enhanced glycolytic flux into the non-oxidative arm of the PPP, thereby decoupling ribose biogenesis from NADPNADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in Kras-driven PDAC.

Publication Title

Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP022913
RNA-Guided Human Gene Activation by Cas9/CRISPR-Based Engineered Transcription Factors
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Synthetic transcription factors can be applied in many areas of biotechnology, medicine, and basic research.  In contrast to current methods based on engineering new DNA-binding proteins, we show that Cas9 fused to a transcriptional activation domain can be targeted by combinations of guide RNA molecules to induce the expression of endogenous human genes. This simple approach for targeted gene activation circumvents the need for engineering new proteins and will enable widespread synthetic gene regulation. Overall design: HEK293T cells were transfected with plasmid expressing Cas9-VP64 fusion protein and a guide RNA. As a control, empty guide RNA was transfected. Gene expression was then measured using mRNA-seq, and differential expression calculated using DESeq. All experiments were performed in biological duplicates or triplicates.

Publication Title

RNA-guided gene activation by CRISPR-Cas9-based transcription factors.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE56345
Therapeutic potential of spleen tyrosine kinase inhibition for treatment of high-risk precursor B-cell acute lymphoblastic leukemia
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This study revealed pathogenic role of pre-BCR-independent SYK activation in high-risk B-ALL.

Publication Title

Therapeutic potential of spleen tyrosine kinase inhibition for treating high-risk precursor B cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10869
Effects of CaMKIV loss on cocaine-induced gene expression in the striatum
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Ablation of the Camk4 gene in dopaminoceptive neurons of the brain was performed using the Cre/loxP system, with the recombinase expressed from a BAC-derived Drd1a promoter.

Publication Title

Loss of the Ca2+/calmodulin-dependent protein kinase type IV in dopaminoceptive neurons enhances behavioral effects of cocaine.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP119838
AhR activity directs BRAF inhibitors resistance in metastastic melanoma
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

BRAF oncogene is mutated in ~50% of human cutaneous melanomas. The BRAF V600E mutation leads to constitutive activation of the mitogen-activated protein kinase (MAPK) pathway fuelling cancer growth. The inhibitors of BRAF V600E (BRAFi), lead to massive and high response rate. However, BRAFi-resistant cells that operate as a cellular reservoir for relapses severely limits the duration of the clinical response. The recent depiction of these resistant cells did not identify druggable targets to ensure long-term survival under BRAFi. Here, we identify the aryl hydrocarbon receptor (AhR) as a target to eradicate resistant cells. We show that BRAFi bind to AhR on a new site, named beta-pocket, and reprogram gene expression independently of its partner ARNT. beta-pocket activation induces a pigmentation signature, which is associated to BRAFi-induced cell death of sensitive BRAF V600E melanoma cells and tumour shrinkage. Intriguingly, in resistant cells, BRAFi does not induced a pigmentation signature since these cells display another AhR program; AhR-ARNT dependant. By this way, AhR directs several key BRAFi-resistant genes. At single cell level, this constitutive activation of AhR-ARNT is identified in rare cells before BRAFi-treatment of melanoma tumours and an enrichment of these alpha-cells is observed under BRAFi. Our data strongly suggest that an endogenous AhR ligand activates AhR-ARNT via the canonical AhR pocket (alpha-pocket), thus favouring BRAFi-resistant gene expression. Importantly, we identify the clinically compatible AhR antagonist, the resveratrol (RSV), able to abrogate the deleterious constitutive activation of AhR and to reduce the cellular reservoir for the relapse. Taken together, this work reveals that constitutive AhR signalling drives BRAFi resistance and constitutes a therapeutic target to achieve long-term patient survival under BRAFi. More broadly, the constitutive activation of AhR by endogenous ligands is in line with the ability of UV radiations to generate potent AhR ligands and to favour melanoma onset. Overall design: Total RNA isolated from 12 human melanoma cell lines (501Mel) after different treatments was subjected to multiplexed RNA-sequencing using Illumina NextSeq500 sequencing tehnology.

Publication Title

Sustained activation of the Aryl hydrocarbon Receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE57907
Expression data from skin of bovines infested with ticks
  • organism-icon Bos taurus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

The aim of this work was to access the early immune response triggered by R. microplus larvae attachment in previously selected resistant and susceptible animals in a bovine F2 population derived from Gyr (Bos indicus) Holstein (Bos taurus) crosses.

Publication Title

Microarray analysis of tick-infested skin in resistant and susceptible cattle confirms the role of inflammatory pathways in immune activation and larval rejection.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP073041
TBX18 regulates the differentiation of periductal smooth muscle stroma and the maintenance of epithelial integrity in the prostate
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The T-box transcription factor TBX18 is essential to mesenchymal cell differentiation in several tissues and Tbx18 loss-of-function results in dramatic organ malformations and perinatal lethality. Here we demonstrate for the first time that Tbx18 is required for the normal development of periductal smooth muscle stromal cells in prostate, particularly in the anterior lobe, with a clear impact on prostate health in adult mice. Prostate abnormalities are only subtly apparent in Tbx18 mutants at birth; to examine postnatal prostate development we utilized a relatively long-lived hypomorphic mutant and a novel conditional Tbx18 allele. Similar to the ureter, cells that fail to express Tbx18 do not condense normally into smooth muscle cells of the periductal prostatic stroma. However, in contrast to ureter, the periductal stromal cells in mutant prostate assume a hypertrophic, myofibroblastic state and the adjacent epithelium becomes grossly disorganized. To identify molecular events preceding the onset of this pathology, we compared gene expression in the urogenital sinus (UGS), from which the prostate develops, in Tbx18-null and wild type littermates at two embryonic stages. Genes that regulate cell proliferation, smooth muscle differentiation, prostate epithelium development, and inflammatory response were significantly dysregulated in the mutant urogenital sinus around the time that Tbx18 is first expressed in the wild type UGS, suggesting a direct role in regulating those genes. Together, these results argue that Tbx18 is essential to the differentiation and maintenance of the prostate periurethral mesenchyme and that it indirectly regulates epithelial differentiation through control of stromal-epithelial signaling. Overall design: Embryos were collected from timed matings of Tbx18Gfp/+ knock-in mutants at E16.5 and E18.5, and genotyped to identify Tbx18Gfp/Gfp null mutants and wild-type (WT) littermates. The urogenital sinus (UGS) was dissected and used to extract RNA from each of three animals of each genotype. The RNA samples were pooled to generate libraries for sequencing.

Publication Title

Tbx18 Regulates the Differentiation of Periductal Smooth Muscle Stroma and the Maintenance of Epithelial Integrity in the Prostate.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE37458
Expression data from WT and VAChT KDHOM ventricles
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

VAChT KDHOM mice have a 70% decrease in the vesicular acetylcholine transporter (VAChT) and this leads to a systemic decrease in ACh release and cardiac dysfunction.

Publication Title

An analysis of the myocardial transcriptome in a mouse model of cardiac dysfunction with decreased cholinergic neurotransmission.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP046746
RNA-seq profiling of transcriptomes of control and Hif1a mutant E12.5 hearts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: to identify genes aberrantly expressed upon myocardial ablation of Hif1a Methods: a floxed Hif1a allele was deleted in mouse embryonic hearts using a NXK2.5Cre line. Total RNA was extracted from E12.5 hearts (n=3 for controls and mutants) usinz Trizol and processed for RNA-seq. Reads were mapped to Mm10 reference genome using TopHat2 and Bowtie2. Transcript expression values were determined after transcript normalization with AltAnalyze Results: this analysis revealed a total of 1451 genes significantely (|Fold| > 20% and P<0.05) modulated in Hif1a cKO hearts Overall design: 6 total RNAseq runs with 3 experimental samples and 3 controls samples

Publication Title

HIF1α Represses Cell Stress Pathways to Allow Proliferation of Hypoxic Fetal Cardiomyocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact