refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 137 results
Sort by

Filters

Technology

Platform

accession-icon GSE109070
rGal1 transcriptional effects over RWP-1
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

rGal1 (recombinant Galectin-1) vs non treated (Ctrl) pancreatic cancer cell line RWP-1

Publication Title

Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP014184
Modulation of mucosal immune responses to Clostridium difficile by peroxisome proliferator-activated receptor ? and microRNA-146b
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

BACKGROUND: miRNA have been shown to play an important role during immune-mediated diseases such as inflammatory bowel disease. The aim of this study was to assess differential expression of miRNA between uninfected and infected mice with Clostridium difficile strain VPI 10463 RESULTS: MicroRNA (miRNA)-sequencing analysis indicated that miR-146b, miR-1940, and miR-1298 were significantly overexpressed in colons of C. difficile-infected mice Overall design: Colon of uninfected and C.difficile-infected C57BL6/J WT mice were sampled at day 4 post-infection with Clostridium difficile VPI 10463. The infection dose was 107 cfu/mouse.

Publication Title

Modeling the role of peroxisome proliferator-activated receptor γ and microRNA-146 in mucosal immune responses to Clostridium difficile.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP119354
Atrial Molecular Asymmetry Precedes the Emergence of Cardiac Septation [RNA-seq]
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Comparison of the meis2b+ and the meis2b- halves of the atrium of the adult zebrafish atrium reveals the existence of two different transcriptional domains. These two domains analogous to that of the two atria in terrestrial vertebrates Overall design: To determine the expression profiles of the Tg(meis2b-reporter)-positive vs -negative atrial compartments, a total of 6 hearts of 3 mpf Tg(meis2b-reporter) zebrafish were micro-dissected. A total of 4 pools were made: the first two pools, each contained 3 Tg(meis2b-reporter)-positive atrial compartments, and the other two contained the Tg(meis2b-reporter)-negative halves.

Publication Title

Distinct myocardial lineages break atrial symmetry during cardiogenesis in zebrafish.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE44905
Expression data from LNCaP cells treated with DHT and enzalutamide
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Enzalutamide (formerly MDV3100 and available commercially as Xtandi), a novel androgen receptor (AR) signaling inhibitor, blocks the growth of castration-resistant prostate cancer (CRPC) in cellular model systems and was shown in a clinical study to increase survival in patients with metastatic CRPC. Enzalutamide inhibits multiple steps of AR signaling: (1) binding of androgens to AR, (2) AR nuclear translocation, and (3) association of AR with DNA.

Publication Title

Enzalutamide, an androgen receptor signaling inhibitor, induces tumor regression in a mouse model of castration-resistant prostate cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE59110
Environmentally Induced Epigenetic Transgenerational Inheritance of Altered Sertoli Cell Transcriptome and Epigenome: Molecular Etiology of Male Infertility
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE41173
Environmentally Induced Epigenetic Transgenerational Inheritance of Altered Sertoli Cell Transcriptome and Epigenome: Molecular Etiology of Male Infertility [Affymetrix]
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The exposure of a gestating female during the period of gonadal sex determination has been shown to promote sperm epimutations, differential DNA methylation regions (DMR), that transmit transgenerational disease to subsequent generations. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell) that influences the onset of a specific disease (male infertility). A gestating female rat (F0 generation) was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, a spermatogenic cell apoptosis was observed. The Sertoli cells that provide the physical and nutritional support for the spermatogenic cells were isolated and alterations in gene expression examined. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific signaling pathways and cellular processes were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR) modified in the vinclozolin F3 generation Sertoli cell. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell) epigenome and transcriptome that then has a role in the adult onset disease (male infertility). The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility.

Publication Title

Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE59511
Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and Subsequent Germline
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE59278
Environmentally induced epigenetic transgenerational inheritance of ovarian disease
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Environmentally induced epigenetic transgenerational inheritance of ovarian disease.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE43559
Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and Subsequent Germline [Affymetrix]
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germline is associated with primordial germ cell development and during fetal gonadal sex determination. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation primordial germ cell transcriptome and epigenome (DNA methylation) was altered transgenerationally. Interestingly, the differential DNA methylation regions (DMR) and altered transcriptomes were distinct between the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DMR and transcriptional alterations were observed in the E13 PGC than E16 germ cells. Observations demonstrate an altered transgenerational epigenetic reprogramming and function of the primordial germ cells and subsequent male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

Publication Title

Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE33423
Environmental Toxicants Induce Epigenetic Transgenerational Inheritance of Ovarian Disease [Affymetrix]
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

The epigenetic transgenerational actions of environmental toxicants and relevant mixtures on ovarian disease was investigated with the use of a fungicide, a pesticide mixture, a plastic mixture, dioxin and a hydrocarbon mixture. After transient exposure of an F0 gestating female rat during embryonic gonadal sex determination, the F1, F2 and F3 generation progeny adult onset ovarian disease was assessed. Transgenerational disease phenotypes observed included an increase in cysts resembling human polycystic ovarian disease (PCO) and a decrease in the ovarian primordial follicle pool size resembling premature ovarian failure (POF). The F3 generation granulosa cells were isolated and found to have a transgenerational effect on the transcriptome and epigenome (differential DNA methylation). Epigenetic biomarkers for environmental exposure and associated gene networks were identified. Epigenetic transgenerational inheritance of ovarian disease states were induced by different classes of environmental compounds suggesting a role of environmental epigenetics in ovarian disease etiology.

Publication Title

Environmentally induced epigenetic transgenerational inheritance of ovarian disease.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact