refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 206 results
Sort by

Filters

Technology

Platform

accession-icon GSE12730
Mouse gestational protein restriction: Newborn offspring liver and hindleg muscle
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gestational protein restriction is a model for low birth size. We hypothesized that taurine supplementation would protect against changes in newborn liver and muscle caused by a maternal low protein diet.

Publication Title

Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring's liver and skeletal muscle; protective effect of taurine.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68001
In vitro activation and reversion of human primary hepatic stellate cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Liver fibrosis is characterized by the excessive formation and accumulation of matrix proteins as a result of wound healing in the liver. A main event during fibrogenesis is the activation of the liver resident quiescent hepatic stellate cell (qHSC). Recent studies suggest that reversion of the activated HSC (aHSC) phenotype into a quiescent-like phenotype could be a major cellular mechanism underlying fibrosis regression in the liver, thereby offering new therapeutic perspectives for the treatment of liver fibrosis. The goal of the present study is to identify experimental conditions that can revert the activated status of human HSCs and to map the molecular events associated with this phenotype reversion by gene expression profiling

Publication Title

In vitro reversion of activated primary human hepatic stellate cells.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE11511
Identification of histone codes and crosstalk in fission yeast
  • organism-icon Schizosaccharomyces pombe
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Aims: To map histone modifications with unprecedented resolution both globally and locus-specifically, and to link modification patterns to gene expression. Materials & methods: Using correlations between quantitative mass spectrometry and chromatin immunoprecipitation/microarray analyses, we have mapped histone post-translational modifications in fission yeast (Schizosaccharomyces pombe). Results: Acetylations at lysine 9, 18 and 27 of histone H3 give the best positive correlations with gene expression in this organism. Using clustering analysis and gene ontology search tools, we identified promoter histone modification patterns that characterize several classes of gene function. For example, gene promoters of genes involved in cytokinesis have high H3K36me2 and low H3K4me2, whereas the converse pattern is found ar promoters of gene involved in positive regulation of the cell cycle. We detected acetylation of H4 preferentially at lysine 16 followed by lysine 12, 8 and 5. Our analysis shows that this H4 acetylation bias in the coding regions is dependent upon gene length and linked to gene expression. Our analysis also reveals a role for H3K36 methylation at gene promoters where it functions in a crosstalk between the histone methyltransferase Set2KMT3 and the histone deacetylase Clr6, which removes H3K27ac leading to repression of transcription. Conclusion: Histone modification patterns could be linked to gene expression in fission yeast.

Publication Title

Genome-wide mapping of histone modifications and mass spectrometry reveal H4 acetylation bias and H3K36 methylation at gene promoters in fission yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51882
Early Mouse Hepatic Stellate Cell Activation
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Early during culture of primary mouse HSCs gene expression changes.

Publication Title

Gene expression profiling of early hepatic stellate cell activation reveals a role for Igfbp3 in cell migration.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49995
Gene expression profiling and secretome analysis differentiate Adult-Derived Human Liver Stem/progenitor Cells and human hepatic stellate cells
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Adult-derived human liver stem/progenitor cells (ADHLSC) are obtained after primary culture of the liver parenchymal fraction. The cells are of fibroblastic morphology and exhibit a hepato-mesenchymal phenotype. Hepatic stellate cells (HSC) derived from the liver non-parenchymal fraction present a comparable morphology as ADHLSC. Because both ADHLSC and HSC are described as liver stem/progenitor cells, we strived to extensively compare both cell populations at different levels and to propose tools demonstrating their singularity.

Publication Title

Gene expression profiling and secretome analysis differentiate adult-derived human liver stem/progenitor cells and human hepatic stellate cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE153703
The Hippo pathway effector YAP controls mouse hepatic stellate cell activation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We identified the Hippo pathway and its effector YAP as a key pathway that controls stellate cell activation. YAP is a transcriptional co-activator and we found that it drives the earliest changes in gene expression during stellate cell activation.

Publication Title

The Hippo pathway effector YAP controls mouse hepatic stellate cell activation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE40642
Pdx1 overexpression sensitizes to IL-1b-induced apoptosis
  • organism-icon Rattus norvegicus
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Cytokines have been shown to play a key role in the destruction of beta cells. In the rat insulinoma cell line (INS-1ab) overexpressing pancreatic duodenum homeobox 1 (Pdx1) increases sensitivity to Interleukin 1b (IL-1b). To elucidate mechanisms of action underlying Pdx1 driven potentiation of beta-cell sensitivity to IL-1, we performed a microarray analysis of INS-1ab cells with and without Pdx1 overexpression exposed to IL-1 between 2h and 24h.

Publication Title

Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic β cell fate in response to cytokines.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE15606
Whole genome transcription profile of antigen receptor activated B cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

To search for rapid changes in gene expression following BCR activation, we performed DNA microarray analysis of activated splenic B cells with and without anti-IgM treatment for 3 hour. The expression of a remarkably large set of genes differed significantly.

Publication Title

Initiation of antigen receptor-dependent differentiation into plasma cells by calmodulin inhibition of E2A.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE12195
Mutations of multiple genes deregulate the NF-kB pathway in diffuse large B cell lymphoma
  • organism-icon Homo sapiens
  • sample-icon 135 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Diffuse large B-cell lymphoma (DLBCL), the most common form of lymphoma in adulthood, comprises multiple biologically and clinically distinct subtypes including germinal center B cell-like (GCB) and activated B cell like (ABC) DLBCL. Gene expression profile studies have shown that its most aggressive subtype, ABC-DLBCL, is associated with constitutive activation of the NF-kB transcription complex. However, except for a small fraction of cases, it remains unclear whether NF-kB activation in these tumors represents an intrinsic program of the tumor cell of origin or a pathogenetic event. Here we show that >50% of ABC-DLBCL and a smaller fraction of GCB-DLBCL carry somatic mutations at multiple genes, including negative (TNFAIP3/A20) and positive (CARD11, TRAF2, TRAF5, MAP3K7/TAK1 and TNFRSF11A/RANK) regulators of NF-kB. Of these, the A20 gene, which encodes for a ubiquitin-modifying enzyme involved in termination of NF-kB responses, is the most commonly affected one, with ~30% of the patients displaying biallelic inactivation by mutations and/or deletions, suggesting a tumor suppressor role. Less frequently, missense mutations of TRAF2 and CARD11 produce molecules with significantly enhanced ability to activate NF-kB. Thus, our results demonstrate that NF-kB activation in DLBCL is caused by genetic lesions affecting multiple genes, whose loss or activation may promote lymphomagenesis by leading to abnormally prolonged NF-kB responses.

Publication Title

Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE68000
Transcriptome of human liver cells and culture-activated hepatic stellate cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

The molecular determinants of a healthy human liver cell phenotype remain largely uncharacterized. In addition, the gene expression changes associated with activation of primary human hepatic stellate cells, a key event during fibrogenesis, remain poorly characterized. Here, we provide the transriptomic profile underpinning the healthy phenotype of human hepatocytes, liver sinusoidal endothelial cells (LSECs) and quiescent hepatic stellate cells (qHSCs) as well as activated HSCs (aHSCs)

Publication Title

Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact