refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 132 results
Sort by

Filters

Technology

Platform

accession-icon GSE34980
RNase Y of Staphylococcus aureus and its role in the activation of virulence genes
  • organism-icon Staphylococcus aureus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix S. aureus Genome Array (saureus)

Description

RNase Y of Bacillus subtilis is a key member of the degradosome and important for bulk mRNA turnover. In contrast to B. subtilis, the RNase Y homologue (rny/cvfA) of Staphylococcus aureus is not essential for growth. Here we found that RNase Y plays a major role in virulence gene regulation. Accordingly, rny deletion mutants demonstrated impaired virulence in a murine bacteraemia model. RNase Y is important for the processing and stabilisation of the immature transcript of the global virulence regulator system SaePQRS. Moreover, RNase Y is involved in the activation of virulence gene expression at the promoter level. This control is independent of both the virulence regulator agr and the saePQRS processing and may be mediated by small RNAs some of which were shown to be degraded by RNase Y. Besides this regulatory effect, mRNA levels of several operons were significantly increased in the rny mutant and the half-life of one of these operons was shown to be extremely extended. However, the half-life of many mRNA species was not significantly altered. Thus, RNase Y in S. aureus influences mRNA expression in a tightly controlled regulatory manner and is essential for coordinated activation of virulence genes.

Publication Title

RNase Y of Staphylococcus aureus and its role in the activation of virulence genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69864
Mouse kidney gene expression regulated by C2
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This is to determine in vivo kidney tissue gene expression regulated by acetate feeding in drinking water into mice for 6 weeks.

Publication Title

Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24427
Expression data of multiple sclerosis patients receiving subcutaneous Interferon-beta-1b therapy [U133 A and B]
  • organism-icon Homo sapiens
  • sample-icon 250 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The purpose of this study was to characterize the transcriptional effects induced by subcutaneous IFN-beta-1b treatment (Betaferon, 250 g every other day) in patients with relapsing-remitting form of multiple sclerosis (MS).

Publication Title

Long-term genome-wide blood RNA expression profiles yield novel molecular response candidates for IFN-beta-1b treatment in relapsing remitting MS.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE19285
Expression data of multiple sclerosis patients receiving intramuscular Interferon-beta-1a therapy [U133 A and B]
  • organism-icon Homo sapiens
  • sample-icon 137 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The purpose of this study was to characterize the transcriptional effects induced by intramuscular IFN-beta-1a treatment (Avonex, 30 g once weekly) in patients with relapsing-remitting form of multiple sclerosis (MS). By using Affymetrix DNA microarrays, we obtained genome-wide expression profiles of peripheral blood mononuclear cells from 24 MS patients within the first four weeks of IFN-beta administration.

Publication Title

Network analysis of transcriptional regulation in response to intramuscular interferon-β-1a multiple sclerosis treatment.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP130953
Differential miRNA Expression in B Cells/T Cells Associated with Inter-individual Differences in Humoral Immune Response to Measles Vaccination
  • organism-icon Homo sapiens
  • sample-icon 88 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Through Next Generation Sequencing (mRNA-Seq) of intracellular miRNAs in measles virus-stimulated B and CD4+ T cells isolated from high and low antibody responders to measles vaccination, we identified a set of B cell-specific miRNAs (e.g., miR-151a-5p, miR-223, miR-29, miR-15a-5p, miR-199a-3p, miR-103a, and miR-15a/16 cluster) associated with measles-specific antibody response after vaccination. No CD4+ T cell-specific miRNA expression differences between high and low antibody responders were found. DIANA tool was used for gene/target prediction and pathway enrichment analysis and this yielded several biological processes/pathways, including regulation of adherens junction proteins, Fc-receptor signaling pathway, phosphatidylinositol-mediated signaling pathway, growth factor signaling pathway/pathways, transcriptional regulation, apoptosis and virus-related processes, that were significantly associated with neutralizing antibody titers after measles vaccination. This study demonstrates that miRNA expression directly or indirectly influences humoral immunity to measles vaccination and suggests that B cell-specific miRNAs may potentially serve as predictive biomarkers of vaccine response. Overall design: Examination of miRNA expression differences in/between purified B and CD4+ T cells of high and low responders to measles vaccination.

Publication Title

Differential miRNA expression in B cells is associated with inter-individual differences in humoral immune response to measles vaccination.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE42763
Expression data of multiple sclerosis patients receiving glatiramer acetate therapy [U133 Plus 2.0]
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The purpose of this study was to analyze the transcriptional effects induced by glatiramer acetate treatment (GA; Copaxone, 20 mg injected subcutaneously once daily) in blood monocytes of patients with relapsing-remitting form of multiple sclerosis (MS). By using Affymetrix DNA microarrays, we obtained genome-wide expression profiles of monocytes from 8 MS patients within the first two months of GA administration.

Publication Title

Glatiramer acetate treatment effects on gene expression in monocytes of multiple sclerosis patients.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE20377
Activation or maintenance of a leukemia stem cell self-renewal pathway in downstream myeloid cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Activation or maintenance of a leukemia stem cell self-renewal pathway in downstream myeloid cells is an important component of AML development

Publication Title

The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7568
Effects of TGF-beta on mature macrophages
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The goal of the study was to identify the effects of TGF-beta on primary human macrophages maturated under different conditions.

Publication Title

Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14325
Malignant Fibrous Histiocytoma - Pleomorphic Sarcoma, NOS -Gene expression, Histology and clinical course -A pilot study
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This study was performed to identify gene expression differences in not otherwise specified soft tissue sarcomas (NOS, malignant fibrous histiocytomas) and correlate them to histological findings and the clinical course. RNA was isolated and differential gene expression was analysed by the microarray technique.

Publication Title

Malignant fibrous histiocytoma--pleomorphic sarcoma, NOS gene expression, histology, and clinical course. A pilot study.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE59704
Anticancer effects of pycnogenol, catechin, epicatechin, taxifol and resveratrol on human fibrosarcoma cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We assessed the apoptotic and antiproliferative effects of resveratrol, pycnogenol and its metabolites on HT1080 human fibrosarcoma cells in vitro. Viability, apoptosis and necrosis were quantified by FACS analysis (Propidiumiodide/AnnexinV staining). Gene expression was analysed by RNA-Microarray. Cell proliferation was analysed by BrdU ELISA assay.

Publication Title

Resveratrol induces apoptosis and alters gene expression in human fibrosarcoma cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact