refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 893 results
Sort by

Filters

Technology

Platform

accession-icon GSE29145
PKCz-mediated Gaq stimulation of the ERK5 pathway is involved in cardiac hypertrophy
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Gq-coupled G protein-coupled receptors (GPCR) mediate the actions of a variety of messengers that are key regulators of cardiovascular function. Enhanced Gaq-mediated signaling plays an important role in cardiac hypertrophy and in the transition to heart failure. We have recently described that Gaq acts as an adaptor protein that facilitates PKCz-mediated activation of ERK5 in epithelial cells. Since the ERK5 cascade is known to be involved in cardiac hypertrophy, we have investigated the potential relevance of this pathway in Gq-dependent signaling in cardiac cells.

Publication Title

Protein kinase C (PKC)ζ-mediated Gαq stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE11381
Gene expression profiling of mouse epidermal keratinocytes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

DNA microarray technology is a powerfull tool for genome-wide gene expression analysis of biological samples. Here we review the methodology for expression profiling analysis of skin tissue or purified keratinocytes from mice. We explained the methodology and protocols for RNA preservation and purification, RNA quality and integrity tests, and DNA microarray technology types that can be used. Furthermore, using a dataset of mice samples, we explained how to perform chip raw data preprocessing and normalization, differential expression analysis, as well as gene-clustering and funcional analysis of gene deregulation.

Publication Title

Gene expression profiling of mouse epidermal keratinocytes.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon E-MEXP-466
Transcription profiling of two populations of non-hematopoetic stem cells (MSC and MAPC) isolated from human bone marrow
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Compare the behaviour of two populations of non-hematopoetic stem cells (MSC and MAPC) isolated from human bone marrow. The effect of culture conditions on the behaviour of MSC was also characterised by isolating MSC and then culturing the cells for 96h in MAPC growth conditions

Publication Title

Validation of COL11A1/procollagen 11A1 expression in TGF-β1-activated immortalised human mesenchymal cells and in stromal cells of human colon adenocarcinoma.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE38048
E2F1 loss induces spontaneous tumour development in Rb-deficient epidermis
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The specific ablation of Rb1 gene in epidermis (RbF/F;K14cre) promotes proliferation and altered differentiation but does not produce spontaneous tumour development. These phenotypic changes are associated with increased expression of E2F members and E2F-dependent transcriptional activity. Here, we have focused on the possible dependence on E2F1 gene function. We have generated mice that lack Rb1 in epidermis in an inducible manner (RbF/F;K14creERTM). These mice are indistinguishable from those lacking pRb in this tissue in a constitutive manner (RbF/F;K14cre). In an E2F1-null background (RbF/F;K14creERTM; E2F1-/- mice), the phenotype due to acute Rb1 loss is not ameliorated by E2F1 loss, but rather exacerbated, indicating that pRb functions in epidermis do not rely solely on E2F1. On the other hand, RbF/F;K14creERTM;E2F1-/- mice develope spontaneous epidermal tumours of hair follicle origin with high incidence. These tumours, which retain a functional p19arf/p53 axis, also show aberrant activation of catenin/Wnt pathway. Gene expression studies revealed that these tumours display relevant similarities with specific human tumours. These data demonstrate that the Rb/E2F1 axis exerts essential functions not only in maintaining epidermal homeostasis, but also in suppressing tumour development in epidermis, and that the disruption of this pathway may induce tumour progression through specific alteration of developmental programs.

Publication Title

E2F1 loss induces spontaneous tumour development in Rb-deficient epidermis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48522
Akt signalling leads to stem cell activation and promotes tumour development in epidermis.
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A permantly active form of the oncogene Akt was expressed in the keratinocytes of the basal proliferative layer of the epidermis. Stem cells of the hair follicle expressing the cell surface marker CD34 were isolated. RNA form the CD34(+) and CD34(-) keratinocytes was extracted and and hybridized to Mouse Genome 430 2.0 Affymetrix arrays.

Publication Title

Akt signaling leads to stem cell activation and promotes tumor development in epidermis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33348
The Rho Exchange Factors Vav2 and Vav3 Control a Lung MetastasisSpecific Transcriptional Program in Breast Cancer Cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The guanosine triphosphatases of the Rho and Rac subfamilies regulate protumorigenic pathways and are activated by guanine nucleotide exchange factors (Rho GEFs), which could be potential targets for anticancer therapies. We report that two Rho GEFs, Vav2 and Vav3, play synergistic roles in breast cancer by sustaining tumor growth, neoangiogenesis, and many of the steps involved in lung-specific metastasis. The involvement of Vav proteins in these processes did not correlate with Rac1 and RhoA activity or cell migration, implying the presence of additional biological programs. Microarray analyses revealed that Vav2 and Vav3 controlled a vast transcriptional program in breast cancer cells through mechanisms that were shared between the two proteins, isoform-specific or synergistic. Furthermore, the abundance of Vav regulated transcripts was modulated by Rac1-dependent and Rac1-independent pathways. This transcriptome encoded therapeutically targetable proteins that played non redundant roles in primary tumorigenesis and lung-specific metastasis, such as integrin-linked kinase (Ilk), the transforming growth factorb family ligand inhibin bA, cyclooxygenase-2, and the epithelial cell adhesion molecule Tacstd2. It also contained gene signatures that predicted disease outcome in breast cancer patients. These results identify possible targets for treating breast cancer and lung metastases and provide a potential diagnostic tool for clinical use.

Publication Title

The rho exchange factors vav2 and vav3 control a lung metastasis-specific transcriptional program in breast cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE77540
Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE77539
Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse [gene expression]
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Multiple myeloma (MM) remains incurable despite the introduction of novel agents and a relapsing course is observed in the majority of patients. Although the development of genomic technologies has greatly improved our understanding of MM pathogenesis, the mechanisms underlying relapse have been less investigated. In this study, an integrative analysis of DNA copy number, DNA methylation and gene expression was conducted in matched diagnosis and relapse samples from 17 MM patients. Overall, the acquisition of abnormalities at relapse was much more frequent than the lost of lesions present at diagnosis, and DNA losses were significantly more frequent at relapse than in diagnosis samples. Interestingly, copy number abnormalities involving more than 100 Mb of DNA at relapse significantly impact the gene expression of these samples, provoking a particular deregulation of IL-8 pathway. On the contrary, no relevant modifications of gene expression were observed in those samples with less than 100 Mb affected by chromosomal changes. Although different statistical approaches were used to uncover genes whose abnormal expression at relapse was regulated by DNA methylation, only two genes significantly deregulated in relapse samples (SORL1 and GLT1D1) showed a negative methylation-expression correlation. A deeper analysis demonstrated that DNA methylation was involved in regulation of SORL1 expression in MM. Finally, relevant changes in gene expression observed in relapse samples, such us downregulation of CD27 and P2RY8, were not apparently preceded by alterations in corresponding DNA. Taken together, these results showed that genomic heterogeneity, both at the DNA and RNA level, is a hallmark of MM transition from diagnosis to relapse.

Publication Title

Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE38257
A Novel Tumor suppressor network in squamous malignancies
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The specific ablation of Rb1 gene in stratified epithelia (RbF/F;K14cre) promotes proliferation and altered differentiation but is insufficient to produce spontaneous tumors. The pRb relative, p107, compensates some of the functions of pRb in these tissues, however RbF/F;K14cre;p107-/- mice die postnatally. Acute pRb loss in stratified epithelia, using an inducible mouse model (RbF/F;K14creERTM), shows that p107 exerts specific tumor suppressor functions in its absence. After simultaneous absence of pRb and p107, p53 transcriptional function is impaired and Pten expression is reduced. All mutant mice develop spontaneous squamous tumors carcinomas rapidly. Gene expression analysis of mouse tumors, besides supporting the impaired p53 function and the susceptibility to Akt/mTOR inhibitors, also revealed significant overlap with human squamous carcinomas. Thus, RbF/F;K14creERTM;p107-/- may constitute a new mouse model for these malignancies. Collectively, these data demonstrate the existence of a previously unreported functional connection between pRb, Pten and p53 tumor suppressors, through p107, of a particular relevance in squamous tumor development.

Publication Title

A novel tumor suppressor network in squamous malignancies.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9562
Gene profiling approaches help to define the specific functions of retinoblastoma family in epidermis
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The epidermal-specific ablation of Rb gene leads to increased proliferation, aberrant differentiation, and the disengagement of these processes in vivo and in vitro. These differences in phenotype are more severe with the loss of p107, demonstrating the functional compensation between pRb and p107. As p107 and p130 also exert overlapping functions in epidermis, we have generated Rb(F19/F19)K14cre;Rbl2-/- (pRb-;p130-) mice to analyze possible functional redundancies between pRb and p130. The epidermal phenotype was very similar between pRb- and pRb-;p130- mice, suggesting that pRb and p130 activities are not redundant in epidermis. Importantly, we can correlate the proliferation differences with specific changes in gene expression between pRb-, pRb-;p107- and pRb-;p130- primary keratinocytes using microarray analysis, and explain the phenotypes in the context of altered E2F expression and functionality. Our findings support a model in which the distinct retinoblastoma family members, in conjunction with E2F members, play a central role in regulating epidermal homeostasis through specific or overlapping activities.

Publication Title

Gene profiling approaches help to define the specific functions of retinoblastoma family in epidermis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact