The directed differentiation of induced pluripotent stem (iPS) and embryonic stem (ES) cells into definitive endoderm (DE) would allow the derivation of otherwise inaccessible progenitors for endodermal tissues. However, a global comparison of the relative equivalency of DE derived from iPS and ES populations has not been performed. Recent reports of molecular differences between iPS and ES cells have raised uncertainty as to whether iPS cells could generate autologous endodermal lineages in vitro. Here, we have shown that both mouse iPS and parental ES cells exhibited highly similar in vitro capacity to undergo directed differentiation into DE progenitors. With few exceptions, both cell types displayed similar surges in gene expression of specific master transcriptional regulators and global transcriptomes that define the developmental milestones of DE differentiation. Microarray analysis showed considerable overlap between the genetic programs of DE derived from ES/iPS cells in vitro and authentic DE from mouse embryos in vivo. Intriguingly, iPS cells exhibited aberrant silencing of imprinted genes known to participate in endoderm differentiation, yet retained a robust ability to differentiate into DE. Our results show that, despite some molecular differences, iPS cells can be efficiently differentiated into DE precursors, reinforcing their potential for development of cell-based therapies for diseased endodermal-derived tissues.
Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes.
Specimen part
View SamplesEndodermal progenitor cells (EP cells) are derived from human embryonic stem cell(ESC)-derived definitive endoderm (DE) cells. EP cells are cultured in high BMP media and DE cells are in high Activin media. Both cells can be further differentiated to liver, pancreas, etc.
Self-renewing endodermal progenitor lines generated from human pluripotent stem cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus.
Specimen part, Cell line, Time
View SamplesWe generated human induced pluripotent stem cells (iPSCs) from trisomy 21 (T21) and euploid patient tissues with and without GATA1 mutations causing exclusive expression of truncated GATA1, termed GATA1short (GATA1s). Transcriptome analysis comparing expression levels of genes in GATA1s vs. wtGATA1-expressing progenitors demonstrated that GATA1s impairs erythropoiesis and enhances megakaryopoiesis and myelopoiesis in both T21 and euploid contexts in the iPSC-model system.
Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus.
Specimen part
View SamplesWe modeled human Trisomy 21 primitive hematopoiesis using induced pluripotent stem cells (iPSCs). Primitive multipotent progenitor populations generated from Trisomy 21 iPSCs showed normal proliferative capacity and megakaryocyte production, enhanced erythropoiesis and reduced myeloid development compared to euploid iPSCs.
Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells.
Specimen part
View SamplesWe transduced mouse Gata1- megakaryocyte-erythroid progenitors with MIGRI-GFP vector expressing GATA1fl or GATA1s cDNAs. GFP-positive cells expressing one of the two isoforms of GATA1 were isolated by FACS 42 hours following transduction and used for microarray transcriptome analysis. At this time point, there was no apparent difference in the cell surface phenotypes between GATA1fl and GATA1s-expressing cells. Transcriptome data for G1ME/GATA1fl at 42h were deposited previously under GSE14980 (GSM374049, GSM374050, GSM374051), whereas G1ME/GATA1s at 42h are deposited here.
Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus.
Specimen part
View SamplesInduced pluripotent stem cells hold great promise for modeling human hematopoietic diseases. However, intrinsic variability in the capacities of different iPSC lines for hematopoietic development complicates comparative studies and is currently unexplained.
Clonal genetic and hematopoietic heterogeneity among human-induced pluripotent stem cell lines.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells.
Cell line
View SamplesWe monitored 9 pluripotent stem cell lines across three time points of hepatic directed differentiation, representing 3 developmental stages: undifferentiated (T0), definitive endoderm (T5), and early hepatocyte (T24). ESCs (n=3) and patient-derived normal (n=3) or PiZZ (n=3) iPSCs were analyzed in the undifferentiated state (T0), after differentiation to definitive endoderm (T5), and upon reaching hepatic stage (T24) for a total of 27 samples. We sought to test the hypothesis that a single transgene-free iPSC clone from each donor could be used to detect disease-specific differences between the normal cohort and the PiZZ cohort, anticipating that this difference would emerge only at a developmental stage in which the mutant AAT gene is expressed. Cells were sorted before analysis at T0 and T5 after antibody staining for TRA1-80+/SSEA3+ (T0) or C-kit+/CXCR4+ (T5) cells.
Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells.
Cell line
View SamplesIn this study, we have integrated RNA-seq data from subcellular fractionated RNA (i.e., cytoplasm, nucleoplasm, and chromatin-associated) with GRO-seq data using a novel bioinformatics pipeline. This has yielded a comprehensive catalog of polyadenylated lncRNAs in MCF-7 cells, about half of which have not been annotated previously and about a quarter of which are estrogen-regulated. Knockdown of selected lncRNAs, such as lncRNA152 and lncRNA67 followed by RNA-seq suggest that these lncRNAs regulate the expression of cell cycle genes. Overall design: characterization of long noncoding RNAs
Discovery, Annotation, and Functional Analysis of Long Noncoding RNAs Controlling Cell-Cycle Gene Expression and Proliferation in Breast Cancer Cells.
No sample metadata fields
View Samples