Persistent colonization of the gastric mucosa by Helicobacter pylori (Hp) elicits chronic inflammation and aberrant epithelial cell proliferation, which increases the risk of gastric cancer. We examined the ability of microRNAs to modulate gastric cell proliferation in response to persistent Hp infection and found that epigenetic silencing of miR-210 plays a key role in gastric disease progression. Importantly, DNA methylation of the miR-210 gene was increased in Hp-positive human gastric biopsies as compared to Hp-negative controls. Moreover silencing of miR-210 in gastric epithelial cells promoted proliferation. We identified STMN1 and DIMT1 as miR-210 target genes and demonstrated that inhibition of miR-210 expression augmented cell proliferation by activating STMN1 and DIMT1. Together, our results highlight inflammation-induced epigenetic silencing of miR-210 as a mechanism of induction of chronic gastric diseases, including cancer, during Hp infection.
Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection.
Cell line
View SamplesThe CCR4-NOT complex, bearing poly(A) deadenylation activity, is a highly conserved regulator that is involved in biological control; however its action mechanisms and physiological targets remain unclear. Using genetic deletion of the CNOT3 subunit of this complex in early B cell progenitors, we show that CNOT3 plays a critical role in pro- to pre-B cell transition. CNOT3 participated in controlling germline transcription, compaction of the immunoglobulin heavy chain (Igh) locus, and Igh rearrangement, and in destabilizing tumor suppressor p53 mRNA. Moreover, by genetic ablation of p53 or introduction of pre-rearranged Igh transgene, the B cell developmental defect in the Cnot3 knockout background could be partly rescued, suggesting that CCR4-NOT complex exerts critical control in B cell differentiation processes by co-utilizing transcriptional and post-transcriptional mechanisms. Overall design: Pro-B cells mRNA profiles of Mb1(cre/+) and Cnot3(fl/fl)Mb1(cre/+) mice were generated by deep sequencing using Illumina HiSeq 1500
CNOT3 contributes to early B cell development by controlling Igh rearrangement and p53 mRNA stability.
No sample metadata fields
View SamplesAnalysis of the transcriptional changes in the heart resulting from the loss of cardiac enhancers. As there remains a limited understanding of the phenotypic consequences of enhancer mutations, we examined the impact of loss of function mutations by deleting two enhancers near heart disease genes in mice. In both cases, we observed loss of target gene expression, as well as cardiac phenotypes consistent with heart disease in humans, highlighting the functional importance of enhancers for normal heart function, as well as the potential contribution of enhancer mutations to heart disease. Overall design: Hearts were dissected from wild-type and enhancer-null mice (either embryonic or adult) and processed for deep RNA-seq analysis.
Genome-wide compendium and functional assessment of in vivo heart enhancers.
Sex, Specimen part, Cell line, Subject
View SamplesWe have previously established an in vitro tissue culture system (named VISUAL; Kondo et al., 2016), in which xylem and phloem differentiation can be induced with Arabidopsis thaliana cotyledons
BES1 and BZR1 Redundantly Promote Phloem and Xylem Differentiation.
Specimen part, Treatment, Time
View SamplesXylem consists of three types of cells: vessel cells, also referred to as tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanism of their gene regulation. Here, we show that VASCULAR-RELATED NAC-DOMAIN 6 (VND6), a master regulator of TEs, regulates these processes in a coordinated manner. We first identified specific genes downstream of VND6 by comparing them with those of SECONDARY WALL-ASSOCIATES NAC DOMAIN PROTEIN1 (SND1), a master regulator of xylem fiber cells, with transformed suspension culture cells in microarray experiments.
Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation.
Time
View SamplesTranscriptiome analysis is an excellent approach to understand the mechanism underlying nuclear reprogramming in somatic-cell-cloned embryos. Analysis of the transcriptomic data from the oocyte to blastocyst stage revealed that specific genes were inappropriately reprogrammed at each stage. Sertoli cell-cloned embryos appear to develop normally because the progression of incorrect reprogramming is concealed throughout development.
The transcriptomic architecture of mouse Sertoli cell clone embryos reveals temporal–spatial-specific reprogramming.
No sample metadata fields
View SamplesCellcell communication is critical for tissue and organ development. In plants, secretory CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides function as intercellular signaling molecules in various aspects of tissue development. However, little is known about intracellular signaling pathways functioning in vascular development downstream of the CLE ligands. To elucidate CLE signaling pathway, we performed GeneChip analysis.
CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling.
Specimen part
View SamplesmRNA sequencing analysis of FACS-purified leptotene/zygotene (L/Z) spermatocytes Overall design: Compare transcriptomes of WT, Pld6 KO, and Dnmt3l KO germ cells in the F1 hybrid background of B6 and MSM to study these mutations affecting gene expression due to nearby retrotransposons.
Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice.
Cell line, Subject
View SamplesDecoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor (TNFR) superfamily, competitively binds and inhibits members of the TNF family, including Fas ligand (FasL), LIGHT, and TL1A. DcR3 was recently reported not only to act as a decoy receptor for these TNFRs but also to play a role as a ligand for the pathogenesis of RA.
Decoy receptor 3 regulates the expression of various genes in rheumatoid arthritis synovial fibroblasts.
Specimen part, Race
View Samples"Omics" technologies have been developed to understand the whole complex microbial systems; however, most omics studies reported so far were utilized to analyze the living matters of single-species. To understand the cell-cell interaction in the gut microbial complex, we selected to examine the interaction of Escherichia coli O157:H7 (O157) and Bifidobacterium longum (BL), known as a pathogenic and a commensal bacteria, as a first step for understanding the whole gut microbial complex. We have developed a novel time-lapse 2D-NMR metabolic profiling system in order to measure the extracellular metabolites, which are considered a key factor to understand the bacterial crosstalk. Furthermore, in combination with transcriptome and proteome analysis, we found that the relationship between BL and O157 could be partially regarded as the producer and the consumer of nutrients, especially in the case of serine and aspartate metabolism. These findings suggest that our novel profiling systems could be a powerful tool toward understanding crosstalk of the whole microbial complex such as the gut, industrial bioreactors or environmental microbial communities.
Dynamic omics approach identifies nutrition-mediated microbial interactions.
No sample metadata fields
View Samples