refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 169 results
Sort by

Filters

Technology

Platform

accession-icon GSE26420
Expression data from HEK293 cells with or without MIBP1 overexpression
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The transcription factor c-MYC intron binding protein 1 (MIBP1) binds to various genomic regulatory regions, including intron 1 of c-MYC. This factor is highly expressed in post-mitotic neurons in the fetal brain and may be involved in various biological steps, such as neurological and immunological processes. In this study, we globally characterized the transcriptional targets of MIBP1 and proteins that interact with MIBP1. Microarray hybridization followed by Gene Set Enrichment Analysis revealed that genes involved in the pathways downstream of MYC, NF-B, and TGF- were downregulated when HEK293 cells stably overexpressed MIBP1. In silico transcription factor binding site analysis of the promoter regions of these downregulated genes showed that the NF-B binding site was the most overrepresented. The upregulation of genes known to be in the NF-B pathway after the knockdown of endogenous MIBP1 in HT1080 cells supports the view that MIBP1 is a downregulator of the NF-B pathway. We also confirmed the binding of the MIBP1 to the NF-B site. By immunoprecipitation and mass spectrometry, we detected O-linked -N-acetylglucosamine (O-GlcNAc) transferase (OGT) as a prominent binding partner of MIBP1. Analyses using deletion mutants revealed that a 154-amino acid region of MIBP1 was necessary for its OGT binding and O-GlcNAcylation. A luciferase reporter assay showed that NF-B-responsive expression was repressed by MIBP1, and stronger repression by MIBP1 lacking the 154-amino acid region was observed. Our results indicate that the primary effect of MIBP1 expression is the downregulation of the NF-B pathway, and that this effect is attenuated by O-GlcNAc signaling.

Publication Title

Genome-wide repression of NF-κB target genes by transcription factor MIBP1 and its modulation by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE7501
Genes in nonpermissive temperature-induced cell growth arrest and differentiation of astrocyte RCG-12 cells
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

We performed global scale microarray analysis to identify detailed mechanisms by which nonpermissive temperature induces cell growth arrest and differentiation in astrocyte RCG-12 cells harboring temperature-sensitive simian virus 40 large T-antigen by using an Affymetrix GeneChip system. Astrocyte RCG-12 cells used in this study were derived from primary cultured rat cortical glia cells infecting with a temperature-sensitive simian virus 40 large T-antigen. Although the cells grew continuously at the permissive temperature, the nonpermissive temperature led to cell growth arrest and differentiation. Of the 15,923 probe sets analyzed, nonpermissive temperature differentially expressed 556 probe sets by >2.0-fold.

Publication Title

Identification of genetic networks involved in the cell growth arrest and differentiation of a rat astrocyte cell line RCG-12.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10805
whole lungs: TAZ-deficient mice and their littermates
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

TAZ-deficient mice have the abnormalities in the lung development. We expect the comparison of the gene expression profiles of TAZ-deficient and wild-type lungs would reveal the underlying mechanisms.

Publication Title

Transcriptional coactivator with PDZ-binding motif is essential for normal alveolarization in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41127
Gene expression profile in the spleen of mice fed Lactobacillus brevis KB290
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Lactic acid bacteria confer a variety of health benefits. Here we investigate the mechanisms by which Lactobacillus brevis KB290 enhances cell-mediated cytotoxic activity. We fed a diet containing KB290 (3 10^9 colony-forming units/g) , or potato starch, to 9-week-old female BALB/c mice for 1, 4, 7, or 14 days and examined the cytotoxic activity of splenocytes was measured. RNA was extracted from the spleen and analyzed for gene expression by DNA microarray.

Publication Title

Effect of Lactobacillus brevis KB290 on the cell-mediated cytotoxic activity of mouse splenocytes: a DNA microarray analysis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE58004
Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Persistent colonization of the gastric mucosa by Helicobacter pylori (Hp) elicits chronic inflammation and aberrant epithelial cell proliferation, which increases the risk of gastric cancer. We examined the ability of microRNAs to modulate gastric cell proliferation in response to persistent Hp infection and found that epigenetic silencing of miR-210 plays a key role in gastric disease progression. Importantly, DNA methylation of the miR-210 gene was increased in Hp-positive human gastric biopsies as compared to Hp-negative controls. Moreover silencing of miR-210 in gastric epithelial cells promoted proliferation. We identified STMN1 and DIMT1 as miR-210 target genes and demonstrated that inhibition of miR-210 expression augmented cell proliferation by activating STMN1 and DIMT1. Together, our results highlight inflammation-induced epigenetic silencing of miR-210 as a mechanism of induction of chronic gastric diseases, including cancer, during Hp infection.

Publication Title

Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE77994
Affymetrix HG-U133 Plus 2 array data of iPSCs and iPSC-derived-NSPCs
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

iPSC-derived NSPCs, which were induced by two different protocols (Embryoid body or Neural rosette) followed by expansion in free-floating culture (neurospheres), had closely resembled profiles.

Publication Title

Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases.

Sample Metadata Fields

Sex, Race

View Samples
accession-icon GSE69762
Gene expression of human small intestine generated by biopsy specimens
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The entire small intestine was obseved by balloon endoscopy. Biopsy specimens were taken from jejunum, ileum and colon, respectively.

Publication Title

Reduced Human α-defensin 6 in Noninflamed Jejunal Tissue of Patients with Crohn's Disease.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE110199
Comparison between WT and bes1 in an in vitro tissue culture system, VISUAL
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

We have previously established an in vitro tissue culture system (named VISUAL; Kondo et al., 2016), in which xylem and phloem differentiation can be induced with Arabidopsis thaliana cotyledons

Publication Title

BES1 and BZR1 Redundantly Promote Phloem and Xylem Differentiation.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE20586
Expression data from Arabidopsis suspension cells overexpressing VND6 and SND1
  • organism-icon Arabidopsis thaliana
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Xylem consists of three types of cells: vessel cells, also referred to as tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanism of their gene regulation. Here, we show that VASCULAR-RELATED NAC-DOMAIN 6 (VND6), a master regulator of TEs, regulates these processes in a coordinated manner. We first identified specific genes downstream of VND6 by comparing them with those of SECONDARY WALL-ASSOCIATES NAC DOMAIN PROTEIN1 (SND1), a master regulator of xylem fiber cells, with transformed suspension culture cells in microarray experiments.

Publication Title

Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation.

Sample Metadata Fields

Time

View Samples
accession-icon GSE57061
Expression data for Lck-Cre, Med23flox/flox and Med23flox/flox;Lck-Cre thymocytes +/- 3hr exposure to plate bound anti-CD3 antibody
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

MED23, a subunit of the Mediator coactivator complex, is important for the expression of a subset of MAPK/ERK pathway-dependent target genes; however, the genes in this subset varies between cell types. MAPK/ERK pathway-dependent processes are essential for T-cell development and function, but whether MED23 has a role in this context is unknown. We generated Med23 conditional knockout mice and induced Med23 deletion in early T cell development using the lineage specific Lck-Cre transgene. While the total cell number and distribution of cell populations in the thymuses of Med23flox/flox;Lck-Cre mice were essentially normal, MED23 null T-cells failed to efficiently populate the peripheral lymphoid organs. MED23 null thymocytes displayed decreased expression of the MAPK/ERK-responsive genes Egr1, Egr2, as well as of the membrane glycoprotein Cd52 (CAMPATH-1). MED23 null CD4 single-positive thymocytes also showed decreased expression of KLF2 (LKLF), a T cell master regulatory transcription factor. Indeed, similarities between the phenotypes of mice lacking MED23 or KLF2 in T-cells suggest that KLF2 deficiency in MED23 null T-cells is one of their key defects. Mechanistic experiments using MED23 null MEFs further suggest that MED23 is required for full activity of the MAPK-responsive transcription factor MEF2, which has previously been shown to mediate Klf2 expression. In summary, our data indicate that MED23 has critical roles in enabling T-cells to populate the peripheral lymphoid organs, possibly by potentiating MEF2-dependent expression of the T-cell transcription factor KLF2.

Publication Title

T-cells null for the MED23 subunit of mediator express decreased levels of KLF2 and inefficiently populate the peripheral lymphoid organs.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact