refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 116 results
Sort by

Filters

Technology

Platform

accession-icon GSE44327
The hypoxia-inducible transcription factor ZNF395 is controlled by I-kappaB kinase and activates genes involved in the innate immune response and cancer
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Activation of the hypoxia inducible transcription factor HIF-alpha and the NF-kappaB pathway promotes inflammation mediated tumor progression.

Publication Title

The hypoxia-inducible transcription factor ZNF395 is controlled by IĸB kinase-signaling and activates genes involved in the innate immune response and cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP060372
Foxd3 promotes the exit from naïve pluripotency and prevents germline specification through enhancer decommissioning [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Following implantation, mouse epiblast cells transit from a naïve to a primed state in which they are competent for both somatic and primordial germ cell (PGC) specification. Using mouse embryonic stem cells (mESC) as an in vitro model to study the transcriptional regulatory principles orchestrating peri-implantation development, here we show that the transcription factor Foxd3 is necessary for the exit from naïve pluripotency and the progression to a primed pluripotent state. During this transition, Foxd3 acts as a repressor that dismantles a significant fraction of the naïve pluripotency expression program through the decommissioning of active enhancers associated with key naïve pluripotency and early germline genes. Subsequently, Foxd3 needs to be silenced in primed pluripotent cells to allow the reactivation of relevant genes required for proper PGC specification. Our findings uncover a wave of activation-deactivation of Foxd3 as a crucial step for the exit from naïve pluripotency and subsequent PGC specification. Overall design: mRNA profiles were generated by RNA-seq in duplicates for each of the following mESC lines: Foxd3fl/fl;Cre-ER mESC maintained in "Serum+LIF" (SL) treated with TM for three days (SL Foxd3-/-); untreated Foxd3fl/fl;Cre-ER SL mESC (SL Foxd3fl/fl); tetON Foxd3 SL mESC treated with Dox for three days; WT SL mESC treated with Dox for three days; Foxd3fl/fl;Cre-ER mESC maintained in "2i+LIF" (2i) treated with TM for three days (2i Foxd3-/-); untreated Foxd3fl/fl;Cre-ER 2i mESC (2i Foxd3fl/fl).

Publication Title

Foxd3 Promotes Exit from Naive Pluripotency through Enhancer Decommissioning and Inhibits Germline Specification.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47778
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage
  • organism-icon Caenorhabditis elegans
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE51162
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage [N2, daf-2, daf-16, daf-2;daf-16]
  • organism-icon Caenorhabditis elegans
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE51161
DAF-16/FoxO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage [N2, xpa-1]
  • organism-icon Caenorhabditis elegans
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.

Publication Title

DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP092111
PRC2 facilitates the regulatory topology required for poised enhancer function during pluripotent stem cell differentiation [RNA-seq EED]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Poised enhancers marked by H3K27me3 in pluripotent cells were previously proposed to facilitate the establishment of somatic expression programs upon embryonic stem cell (ESC) differentiation. However, the functional relevance and mechanism of action of poised enhancers remain unknown. Here, we use genetic deletions to demonstrate that poised enhancers are necessary for the induction of major anterior neural regulators. Mechanistically, poised enhancers enable RNA Polymerase II recruitment to their cognate promoters upon differentiation. Interestingly, poised enhancers already establish physical interactions with their target genes in ESC in a Polycomb repressive complex 2 (PRC2) dependent manner. Loss of PRC2 led to neither the activation of poised enhancers nor the induction of their putative target genes in undifferentiated ESC. In contrast, loss of PRC2 severely and specifically compromised the induction of major anterior neural genes representing poised enhancer targets. Overall, our work illuminates a novel function for polycomb proteins, which we propose facilitate neural induction by providing major anterior neural loci with a permissive regulatory topology. Overall design: mRNA profiles were generated by RNA-seq from mESC and AntNPC for the following lines: WT mESC, WT AntNPC, EED-/- mESC and EED-/- AntNPC

Publication Title

PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP092184
Poised enhancers regulatory activity is topologically facilitated by polycomb [RNA-seq LHX5]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Poised enhancers marked by H3K27me3 in pluripotent cells were previously proposed to facilitate the establishment of somatic expression programs upon embryonic stem cell (ESC) differentiation. However, the functional relevance and mechanism of action of poised enhancers remain unknown. Here, we use genetic deletions to demonstrate that poised enhancers are necessary for the induction of major anterior neural regulators. Mechanistically, poised enhancers enable RNA Polymerase II recruitment to their cognate promoters upon differentiation. Interestingly, poised enhancers already establish physical interactions with their target genes in ESC in a Polycomb repressive complex 2 (PRC2) dependent manner. Loss of PRC2 led to neither the activation of poised enhancers nor the induction of their putative target genes in undifferentiated ESC. In contrast, loss of PRC2 severely and specifically compromised the induction of major anterior neural genes representing poised enhancer targets. Overall, our work illuminates a novel function for polycomb proteins, which we propose facilitate neural induction by providing major anterior neural loci with a permissive regulatory topology. Overall design: mRNA profiles were generated by RNA-seq from AntNPC derived from mESC: WT AntNPC (four biological replicates), PE Lhx5(-109)-/- Clon1 AntNPC (two biological replicates) and PE Lhx5(-109)-/- Clon2 AntNPC (two biological replicates).

Publication Title

PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE145120
Gene expression data of different SSc subsets
  • organism-icon Homo sapiens
  • sample-icon 190 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

We here used whole blood gene expression profiling to differentiate SSc patients from healthy controls (HC) and to identify a specific gene expression and predictive genes for SSc-overlap syndromes.

Publication Title

Whole blood gene expression profiling distinguishes systemic sclerosis-overlap syndromes from other subsets.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE50741
Transcriptional analysis of sweet orange in response to TAL effector-dependent infection
  • organism-icon Citrus sinensis
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Citrus Genome Array (citrus)

Description

We used this microarray data to survey the differentially expressed genes in sweet orange by comparing leaves challenged with X. citri ssp. citri (Xcc) strain 306 with the pthA4 gene and leaves challenged with mutant Xcc306pthA4 without the pthA4 gene 120 hours after inoculation. The deletion of the pthA4 gene reduced the virulence of Xcc306, and eliminated pustule formation. The gene expression changes after inoculation of these two strains represent PthA4-mediated molecular events in a susceptible reaction.

Publication Title

Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE54280
Comparative gene array analysis of progenitor cells from deep neck and subcutaneous adipose tissue
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Expression profiling of progenitor cells from human supraclavicular and subcutaneous adipose tissue. Studies in animal models revealed that brown and white adipocytes derive from different progenitor cells. Molecular characteristics of these cells have not been investigated in detail in humans.

Publication Title

Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue.

Sample Metadata Fields

Sex, Age

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact