refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 738 results
Sort by

Filters

Technology

Platform

accession-icon SRP150686
Understanding Early Stage Myelodysplastic Syndrome Pathobiology
  • organism-icon Mus musculus
  • sample-icon 94 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Delineating key HSC regulators is of significant interest for informing the treatment of hematologic malignancy. While HSC activity is enhanced by overexpression of SKI, the transforming growth factor-beta (TGFß) signaling antagonist corepressor, its requirement in HSC is unknown. Here we reveal a profound defect in Ski-/- HSC fitness but not specification. Transcriptionally, Ski-/- HSC exhibited striking upregulation of TGFb superfamily signaling and splicing alterations. As these are both common aspects of myelodysplastic-syndrome (MDS) pathobiology with prognostic value, we investigated the role of SKI in MDS. A SKI­-correlated gene signature defines a subset of low-risk MDS patients with active TGFß signaling and deregulated RNA splicing (e.g. CSF3R). The apparent paradox of Ski-/- HSC sharing molecular aspects of MDS with elevated SKI-mRNA is resolved by miR-21 targeting of SKI in MDS. We conclude that miR-21-mediated loss of SKI contributes to early stage MDS pathogenesis by activating TGFß signaling and alternative splicing while hindering HSC fitness. Overall design: Single cell RNA seq of transplanted fetal liver-derived hematopoietic stem cells

Publication Title

<i>SKI</i> controls MDS-associated chronic TGF-β signaling, aberrant splicing, and stem cell fitness.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP099451
ALOX5 exhibits anti-tumor and drug-sensitizing effects in MLL-rearranged leukemia
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

MLL-rearranged acute myeloid leukemia (AML) remains a fatal disease with a high rate of relapse and therapeutic failure due to chemotherapy resistance. In analysis of our Affymetrix microarray profiling of human AML and normal control samples, we found that ALOX5 is especially down-regulated in MLL-rearranged AML. Our colony forming/replating and bone marrow transplantation (BMT) assays showed that Alox5 exhibited a moderate anti-tumor effect both in vitro and in vivo. Strikingly, leukemic cells with Alox5 overexpression showed a significantly higher sensitivity to the standard chemotherapeutic agents, i.e., doxorubicin (DOX) and cytarabine (Ara-C). The drug-sensitizing role of Alox5 was further confirmed in human and murine MLL-rearranged AML cell models in vitro, as well as in the in vivo MLL-rearranged AML BMT model coupled with treatment of “5+3” (i.e. DOX plus Ara-C) regimen. Our RNA-seq analysis showed that Stat and K-Ras signaling pathways were negatively correlated with Alox5 overexpression in MLL-AF9-leukemic blast cells, implying targeting those pathways likely contributes to Alox5's functions. Collectively, our work shows that ALOX5 plays a moderate anti-tumor role and functions as a drug sensitizer, with a therapeutic potential, in MLL-rearranged AML. Overall design: To delineate the potential molecular mechanism underlying the anti-tumor and drug-sensitizing effects of Alox5, we performed RNA sequencing (RNA-seq) of two pairs (4 samples) of mouse BM leukemic blast cells collected from the MA9_Ctrl and MA9_Alox5 mice in secondary BMT assays.

Publication Title

ALOX5 exhibits anti-tumor and drug-sensitizing effects in MLL-rearranged leukemia.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP094100
IGF2BP proteins Enhance mRNA stability
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

To evaluate the effect of IGF2BPs on mRNA stability and gene expression output, we conducted RNA-seq in individual IGF2BP knockdown and control HepG2 cells with or without actinomycin D treatment. Our RNA-seq and RNA stability profiling revealed that IGF2BPs were involved in RNA stability regulation and contributed to the stabilization of the transcriptome. Overall design: HepG2 cells were infected with individual lentiviral IGF2BP shRNA and non-specific control (shNS), and selected by puromycin to generate stable knockdown lines. We treated HepG2 cells with actinomycin D to inhibit transcription and collected cells at indicated time points (i.e., 0h, 1h, 3h, 6h). The total RNA was extracted by miRNeasy Kit (Qiagen) and sequenced by Illumina. For IGF2BP-dependent gene expression, untreated cells (i.e., 0h samples) were sequenced in triplicate and analyzed. For RNA stability profiling, RNA half-life was calculated by comparing the gene expression at 1, 3, 6 hours with actinomycin treatment to that in un-treated samples, with two biological replicates for each group.

Publication Title

Recognition of RNA N<sup>6</sup>-methyladenosine by IGF2BP proteins enhances mRNA stability and translation.

Sample Metadata Fields

Specimen part, Treatment, Subject, Time

View Samples
accession-icon SRP090252
The anti-leukemic effect of R-2HG depends on its acting as an m6A mRNA modifier-RNA Seq-PBS / R-2HG treatment
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA-seq from R-2HG sensitive leukemia cells treated with R-2HG or PBS. Overall design: With MTT assays, we identified R-2HG exhibits an anti-leukemia function. We conducted RNA-Seq in the two sensitive cells (NOMO-1 and MA9.3ITD) with R-2HG or without R-2HG treatment for 48 hours to investigate which genes/a-ketoglutarate-dependent dioxygenases/signaling pathways are responsible for the anti-leukemia function of R-2HG. For each group, there are three duplicates.

Publication Title

R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m<sup>6</sup>A/MYC/CEBPA Signaling.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE43270
Genome wide-DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HumanMethylation27 BeadChip (HumanMethylation27_270596_v.1.2), Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE43191
Genome wide-DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients (gene expression)
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HumanMethylation27 BeadChip (HumanMethylation27_270596_v.1.2), Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

The aim of this study is to identify, for the first time, the genome-wide DNA methylation profiles of human articular chondrocytes from OA and healtly cartilage samples.

Publication Title

Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE21383
Expression data from porcine ovary tissue of sows from two prolificacy levels
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Previous results from a genome scan in a F2 Iberian by Meishan intercross showed several chromosome regions associated with litter size traits. In order to identify candidate genes underlying these QTL we have performed an ovary gene expression analysis during pregnancy. F2 sows were ranked by their estimated breeding values for prolificacy, the six sows with higher EBV (HIGH prolificacy) and the six with lower EBV (LOW prolificacy) were selected. Samples were hybridized to Affymetrix porcine expression microarrays. The statistical analysis with a mixed-model approach identified 221 differentially expressed probes, representing 189 genes. These genes were functionally annotated in order to identify the genetic pathways overrepresented. Among the most represented functional groups the first one was immune system response activation against external stimulus. The second group was made up of genes which regulate the maternal homeostasis by complement and coagulation cascades. The last group was involved on lipid and fatty acid enzymes of metabolic processes, which participate in steroidogenesis pathway. In order to identify powerful candidate genes for prolificacy, the second approach of this study was merging microarray data with position information of QTL affecting litter size, previously detected in the same experimental cross. According to this, we have identified 27 differentially expressed genes co-localized with QTL for litter size traits, which fulfill the biological, positional and functional criteria.

Publication Title

Differential gene expression in ovaries of pregnant pigs with high and low prolificacy levels and identification of candidate genes for litter size.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10898
Transcriptome architecture across tissues in the pig
  • organism-icon Sus scrofa
  • sample-icon 63 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask what are the relative contributions of breed or sex when assessed across tissues.

Publication Title

Transcriptome architecture across tissues in the pig.

Sample Metadata Fields

Age

View Samples
accession-icon GSE12837
Gene expression in human myeloid cells.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.

Publication Title

Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12803
Gene expression in human myeloid cells
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.

Publication Title

Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact