refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon SRP154186
Single cell RNA sequencing of primary-isolated erythroid progenitors [Days 1-3]
  • organism-icon Mus musculus
  • sample-icon 576 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

single cell RNA sequencing of freshly isolated mouse BFU-E (burst forming unit-erythroid ) cells cultured for 1, 2, or 3 days with and without 100nM dexamethasone Overall design: six 96 well plates

Publication Title

Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP154147
Single cell RNA sequencing of primary-isolated erythroid progenitors [BFUE, CFUE, intermediates]
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Single cell RNA sequencing of freshly isolated mouse burst forming unit-erythroid (BFU-E) , colony forming unit-erythroid (CFU-E), and intermediate stages of erythroid development cells. Overall design: One 96 well plate with 24 BFU-E, 24 CFU-E, 24 cells with 25-35% expression of CD71/CD24, and 24 cells with 50-60% expression of CD71/CD24.

Publication Title

Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP154149
Single cell RNA sequencing of primary-isolated erythroid progenitors [daughter cells]
  • organism-icon Mus musculus
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Single cell mouse BFU-E (burst forming unit-erythroid ) were FACS-deposited into individual wells of a 96-well plate containing PCM either with or without 100 nM dexamethasone. After 16hrs cells from wells that contained a single pair of daughter cells were separated and each individual daughter cell transcriptome was obtained by single cell RNA-seq. Overall design: 13 daughter cells pairs untreated and 13 pairs treated with 100 nM dexamethasone.

Publication Title

Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP187073
Single cell RNA sequencing of primary-isolated erythroid progenitors [BFUEs_Set2]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Single cell RNA sequencing of freshly isolated mouse burst forming unit-erythroid (BFU-E). Overall design: One 96 well plate with 24 BFU-E.

Publication Title

Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP075262
TGF-ß inhibitors stimulate red blood cell production by enhancing self-renewal of BFU-E erythroid progenitors
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Erythroid progenitor BFU-Es are so-named based on their ability to generate in methylcellulose culture large colonies of erythroid cells that consist of “bursts” of smaller erythroid colonies derived from the later CFU-E Epo- dependent progenitors. “Early” BFU-E cells forming large BFU-E colonies presumably have higher capacities for self-renewal than do those forming small BFU-E colonies. In order to understand the mechanism underlying this heterogeneity, we conducted single cell transcriptome analysis on BFU-E cells purified from mouse embryos. Our analyses showed that there are two principal subgroups of mouse BFU-E cells and that the type III TGFß receptor (TßRIII) is a potential marker that distinguishes “early” and “late” BFU-Es. Expression of TßRIII is correlated with that of GATA1, a gene encoding an erythroid transcription factor induced during the BFU-E to CFU-E transition. The mouse and human BFU-E sub populations (TßRIII10%lo) expressing the 10% lowest amount of surface TßRIII are indeed enriched for early BFU-Es, and are significantly more responsive to glucocorticoid stimulation, which promotes BFU-E self-renewal, as compared to the total BFU-E population. The TßRIII10%lo BFU-E subpopulation presumably represents earlier BFU-Es with maximal capacity for self-renewal. Consistent with this notion, signaling by the TGFß receptor kinases RI and RII increases during the transition from early (TßRIII10%lo) to late (TßRIII10%hi) BFU-Es and then decreases in CFU-E cells. Blocking TGF-ß signaling by receptor kinase inhibitors increase TßRIII10%lo BFU-E cell self-renewal and increases total erythroblast production, suggesting the use of this type of drug in treating Epo unresponsive anemias. Overall design: Discovery of BFU-E subpopulations

Publication Title

TGF-β inhibitors stimulate red blood cell production by enhancing self-renewal of BFU-E erythroid progenitors.

Sample Metadata Fields

Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact