refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 36 results
Sort by

Filters

Technology

Platform

accession-icon GSE29262
Functional Plasticity of Regulatory T Cell Function
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Regulatory T cells (Tregs) can suppress a wide variety of cell types, in diverse organ sites and inflammatory conditions. While Tregs possess multiple suppressive mechanisms, the number required for maximal function is unclear. Furthermore, whether any inter-relationship orcross-regulatory mechanisms exist that areused to orchestrate and control their utilization is unknown. Here we assessed the functional capacity of Tregs lacking the ability to secrete both interleukin-10 (IL-10) and IL-35, which individually are required for maximal Treg activity. Surprisingly, IL-10/IL-35-double deficient Tregswere fully functionalin vitro and in vivo. Loss of IL-10 and IL-35 was compensated for by a concurrent increase in cathepsin E (CTSE) expression, enhanced TRAIL (Tnfsf10)expression and soluble TRAIL release, rendering IL-10/IL-35-double deficient Tregsfunctionally dependent on TRAIL in vitro and in vivo. Lastly, while C57BL/6 Tregs are IL-10/IL-35-dependent, Balb/c Tregs, which express high levels of CTSE and enhanced TRAIL expression, are TRAIL-dependent.These data reveal that cross-regulatory pathways exist, which control the utilization of suppressive mechanisms,thereby providing Tregfunctional plasticity.

Publication Title

The plasticity of regulatory T cell function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42938
Abrupt scrib- vs. Abrupt and RasV12 (RasACT) scrib-, NotchICD (NACT) scrib- +/- JNK (Bsk) expression profiles
  • organism-icon Drosophila melanogaster
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Drosophila mosaic eye-antennal discs from the listed genotypes generated using the MARCM system were dissected from 3rd instar larvae at day 5 after egg deposition.

Publication Title

The BTB-zinc finger transcription factor abrupt acts as an epithelial oncogene in Drosophila melanogaster through maintaining a progenitor-like cell state.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE1478
Comparison between aortic and endocardial endothelial cells expression profiles
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Endocardial (EE) and Aortic (AE) endothelial cells were isolated from the same two rats, pooled (EE and AE kept separately) and cultured for 2 passages. Culture conditions and confluence of EE and AE cell cultures were kept as identical as possible. RNA was isolated and the expression profile of both endothelial cell types was compared using the Affymetrix rat genome U34A array.

Publication Title

Molecular diversity of cardiac endothelial cells in vitro and in vivo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP041036
RNAseq to investigate transcriptional changes in human MM cell lines due to panobinostat, 5-Azacytidine, panobinostat+5-Azacytidine or n-methyl-2-pyrroldine (NMP) treatments.
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Purpose: We applied RNA sequencing technology for high-throughput analysis of transcriptional changes within human MM cell lines JJN3 and U266 due to individual and combination drug treatment. Methods: JJN3 and U266 cells were treated with pan-HDACi panbobinostat, DNMTi 5-Azacytidine, panobinostat+5-Azacytidine or NMP for 4h or 24h in triplicate and transcriptional changes assessed by RNAseq using Illumina HiSeq platform. Specifically, JJN3 cells were treated with 10nM panobinostat, 2.5µM 5-Azacytidine, panobinostat+5-Azacytidine (at given doses), or 10mM NMP. U266 cells were treated with 10nM panobinostat, 10µM 5-Azacytidine, panobinostat+5-Azacytidine (at given doses), or 10mM NMP. Results: We report unique and overlapping transcriptional signatures that lead to the induction of apoptosis in human MM cell lines in a cell-specific manner due to individual or combination treatments. Conclusions: A detailed analysis of differential transcriptional events in human MM cell lines due to HDACi, DNMTi, HDACi+DNMTi and NMP appear to define the molecular events leading to apoptosis and drug mechanism of action. Overall design: We tested triplicate experiments at 4h and 24hr time points in JJN3 and U266 cell lines against vehicle control treated cells.

Publication Title

The drug vehicle and solvent N-methylpyrrolidone is an immunomodulator and antimyeloma compound.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP067737
Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Malignant gliomas constitute one of the most significant areas of unmet medical need, due to the invariable failure of surgical eradication and their marked molecular heterogeneity. Accumulating evidence has revealed a critical contribution by the Polycomb axis of epigenetic repression. However, a coherent understanding of the regulatory networks affected by Polycomb during gliomagenesis is still lacking. Here we integrate transcriptomic and epigenomic analyses to define Polycomb-dependent networks that promote gliomagenesis, validating them both in two independent mouse models and in a large cohort of human samples. We found that Polycomb dysregulation in gliomagenesis affects transcriptional networks associated to invasiveness and de-differentiation. The dissection of these networks uncovers Zfp423 as a crtitical Polycomb-dependent transcription factor whose silencing negatively impacts survival. The anti-gliomagenic activity of Zfp423 requires interaction with the SMAD proteins within the BMP signaling pathway, pointing to a novel synergic circuit through which Polycomb inhibits BMP signaling. Overall design: Transcriptomic analysis of two different stages of gliomagenesis

Publication Title

Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE13911
Expression data from primary gastric tumors (MSI and MSS) and adjacent normal samples
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gastric cancers with mismatch repair (MMR) inactivation are characterised by microsatellite instability (MSI). In this study, the transcriptional profile of 38 gastric cancers with and without MSI was analysed.

Publication Title

Genome-wide expression profile of sporadic gastric cancers with microsatellite instability.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP154838
The histone methyltransferases Suv420h regulate PPAR-? and energy expenditure in response to environmental stimuli
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The rising prevalence of obesity and its associated metabolic abnormalities have become global diseases that carry considerable morbidity and mortality. While there is certainly an important genetic component, extensive human epidemiologic and animal model data suggest an epigenetic component to obesity. Nevertheless, the cellular and molecular underpinnings of these pathways and how they contribute to the development of obesity remain to be elucidated. Suv420h1 and h2 are histone methyltransferases responsible for chromatin compaction and gene repression. Through in vivo, ex-vivo and in vitro studies, we found that Suv420h1 and h2 respond to environmental stimuli and regulate metabolism by downregulating PPAR-?, a master transcriptional regulator of lipid storage and glucose metabolism. Accordingly, mice lacking Suv420h proteins activate PPAR-? target genes in brown adipose tissue to increase mitochondria respiration, improve glucose tolerance and reduce adipose tissue to fight obesity. We conclude that Suv420h proteins are key epigenetic regulator of PPAR-? and the pathways controlling metabolism and weight balance in response to environmental stimuli. Overall design: For experiment 1, total RNA was isolated from males and females control- and Suv420h dKO-derived BAT. For experiment 2, total RNA was isolated from BAT collected from females control and Suv420h dKO mice after both diet regimes (nd = normal diet, hfd = high fat diet).

Publication Title

The Suv420h histone methyltransferases regulate PPAR-γ and energy expenditure in response to environmental stimuli.

Sample Metadata Fields

Sex, Specimen part, Treatment, Subject

View Samples
accession-icon GSE31409
Lentiviral vector-based insertional mutagenesis identifies new clinically relevant cancer genes involved in the pathogenesis of hepatocellular carcinoma
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We devised a novel insertional mutagenesis approach based on lentiviral vectors to induce hepatocellular carcinoma in three mouse models and identified four novel cancer initiating genes. Two genes are the well characterized Braf and Sos1, while the other two are Fign, encoding an AAA ATPase whose functions are poorly understood, and the complex Dlk1-Dio3 imprinted region which has been recently implicated in cancer and stemness. Activation of Fign or Braf and upregulation of the Dlk1-Dio3 imprinted region are functionally interconnected and may altogether control cell transformation, stemness and energy metabolism. Moreover, all the genes identified play a relevant role in human hepatocarcinogenesis as their expression levels and/or transcriptional signatures induced by their deregulation predict a different clinical outcome in hepatocellular carcinoma patients. These series consists of mRNA expression microarray data (The GeneChip Mouse Gene 1.0 ST Array, Affymetrix) from 8 non-tumoral liver and 21 hepatocellular carcinoma induced by insertional mutagenesis.

Publication Title

Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE94359
Gene expression profiling of CD45+ leukocytes infiltrating the prostate of TRAMP and TRAMP-J18-/- (iNKT cell-deficient) mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

To investigate the impact of the iNKT cells on the tumor-infiltrating leukocytes in TRAMP mouse prostate cancer.

Publication Title

Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE106539
Transcriptome-wide gene expression analysis of the cancer cell lines after treatiment with telomerase inhibitor Imetelstat (GRN163L)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

GRN163L is a potent and specifictelomeraseinhibitor and in clinical trials for cancer treatment. To identify the biomarker that might predict response to telomease based therapy, gene expression analysis of the cancer cell lines after treatiment with telomerase inhibitor Imetelstat (GRN163L) was performed.

Publication Title

Interleukin 8 is a biomarker of telomerase inhibition in cancer cells.

Sample Metadata Fields

Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact