refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 34 results
Sort by

Filters

Technology

Platform

accession-icon GSE46416
State- and trait-specific gene expression in euthymia and mania
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [HuEx-1_0-st-v2,coreR3,A20071112,EP.cdf (huex10st)

Description

Gene expression profiles of bipolar disorder (BD) patients were assessed during both a manic and a euthymic phase and compared both intra-individually, and with the gene expression profiles of controls.

Publication Title

Investigation of manic and euthymic episodes identifies state- and trait-specific gene expression and STAB1 as a new candidate gene for bipolar disorder.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE99039
A blood-based gene signature characterizing Idiopathic Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 558 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Establishing reliable biomarkers for assessing and validating clinical diagnosis at early prodromal stages of Parkinsons disease is crucial for developing therapies to slow or halt disease progression. Here, we present the largest study to date using whole blood gene expression profiling from over 500 individuals to identify an 87-gene blood-based signature. Our gene signature effectively differentiates between idiopathic PD patients and controls in both a validation cohort and an independent test cohort, and further highlights mitochondrial metabolism and ubiquitination/proteasomal degradation as potential pathways disrupted in Parkinsons disease.

Publication Title

Analysis of blood-based gene expression in idiopathic Parkinson disease.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE82324
Expression data from yeasts under non-caloric restriction (NR), caloric restriction (CR) and rapamycin treatment (RM)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

We performed microarrays to identify change of gene expression under NR, CR, and RM and found differentially expressed genes between each condition.

Publication Title

Caloric Restriction and Rapamycin Differentially Alter Energy Metabolism in Yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40791
Usp44 binds centrin to regulate centrosome positioning and suppress tumorigenesis
  • organism-icon Homo sapiens
  • sample-icon 192 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Most human tumors have abnormal numbers of chromosomes, a condition known as aneuploidy. The mitotic checkpoint is an important mechanism that prevents aneuploidy through restraining the activity of the anaphase-promoting complex (APC). USP44 was identified as a key regulator of APC activation that maintains the association of MAD2 with the APC co-activator Cdc20. However, the physiological importance of USP44 and its impact on cancer biology are unknown. Here, we show that USP44 is required to prevent tumors in mice and is frequently down-regulated in human lung cancer. USP44 inhibits chromosome segregation errors independently of its role in the mitotic checkpoint by regulating proper centrosome separation, positioning, and mitotic spindle geometry, functions that require direct binding to the centriole protein, centrin. These data reveal a new role for the ubiquitin system in mitotic spindle regulation and underscore the importance of USP44 in the pathogenesis of human cancer.

Publication Title

USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis.

Sample Metadata Fields

Sex, Disease, Disease stage

View Samples
accession-icon GSE47798
Perinatal-Estrogen-Induced Changes in Gene Expression Related to Brain Sexual Differentiation in Mice
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Sexual dimorphism of the behaviors or physiological functions in mammals is mainly due to the sex difference of the brain. The goal of this study is to identify genes mediating sexaul dimorphism of the brain.

Publication Title

Microarray analysis of perinatal-estrogen-induced changes in gene expression related to brain sexual differentiation in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP151594
RNA-seq in wild type and dCAP-D3 mutant tissues
  • organism-icon Drosophila melanogaster
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The goal of this experiment was to identify transcripts that are differentially expressed in dCAP-D3 mutant tissues. Overall design: RNA was isolated from wing discs and salivary glands of wild type (w1118) or dCap-D3 homozygous mutant (dCap-D3c07081/c07081) larvae. Directional (wing disc) or nondirectional (salivary gland) cDNA libraries (50 bp, paired end) were made at the University of Chicago Genomics Core and sequenced on an Illumina HiSeq2500, according to standard protocols.

Publication Title

Comparing and Contrasting the Effects of <i>Drosophila</i> Condensin II Subunit dCAP-D3 Overexpression and Depletion <i>in Vivo</i>.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE59928
Expression data from 24 hours of Sox17 overexpression in pancreatic islets of a 16-week old mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Secretion of insulin by pancreatic cells in response to glucose is central for glucose homeostasis, and dysregulation of this process is a hallmark of the early stages of diabetes. We utilized a tetracycline-inducible approach to investigate the immediate impact of a pulse of Sox17 expression on the insulin secretory pathway. Sox17 gain-of-function animals (Sox17-GOF) were generated using an Ins2-rtTA mouse line and a line in which Sox17 expression is regulated by the tetracycline transactivator (tetO-Sox17). Administering doxycycline to 16-week old mice resulted in Sox17 overexpression in mature cells in the islets.

Publication Title

Sox17 regulates insulin secretion in the normal and pathologic mouse β cell.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE49590
Expression data from 10 day old Arabidopsis thaliana seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Microarrays were used to detail the global programme of gene expression comparing wild-type and RNAi knock-down plants of SPT4-1 and SPT4-2

Publication Title

The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE9954
Large-scale analysis of the mouse transcriptome
  • organism-icon Mus musculus
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used microarrays to compare gene expression across different murine tissues.

Publication Title

Using ribosomal protein genes as reference: a tale of caution.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE77080
Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The number of long-term survivors of high-risk neuroblastoma remains discouraging, with 10-year survival as low as 20%, despite decades of considerable international efforts to improve outcome. Major obstacles remain and include managing resistance to induction therapy, which causes tumor progression and early death in high-risk patients, and managing chemotherapy-resistant relapses, which can occur years after the initial diagnosis. Identifying and validating novel therapeutic targets is essential to improve treatment. Delineating and deciphering specific functions of single histone deacetylases in neuroblastoma may support development of targeted acetylome-modifying therapeutics for patients with molecularly defined high-risk neuroblastoma profiles. We show here that HDAC11 depletion in MYCN-driven neuroblastoma cell lines strongly induces cell death, mostly mediated by apoptotic programs. Genes necessary for mitotic cell cycle progression and cell division were most prominently enriched in at least two of three time points in whole-genome expression data combined from two cell systems, and all nine genes in these functional categories were strongly repressed, including CENPA, KIF14, KIF23 and RACGAP1. Enforced expression of one selected candidate, RACGAP1, partially rescued the induction of apoptosis caused by HDAC11 depletion. High-level expression of all nine genes in primary neuroblastomas signicantly correlated with unfavorable overall and event-free survival in patients, suggesting a role in mediating the more aggressive biological and clinical phenotype of these tumors. Our study identied a group of cell cycle-promoting genes regulated by HDAC11, being both predictors of unfavorable patient outcome and essential for tumor cell viability. The data indicates a signicant role of HDAC11 for mitotic cell cycle progression and survival of MYCN-amplified neuroblastoma cells, and suggests that HDAC11 could be a valuable drug target.

Publication Title

Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival.

Sample Metadata Fields

Cell line, Time

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact