refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 252 results
Sort by

Filters

Technology

Platform

accession-icon GSE44368
The human placental sexome differs between trophoblast epithelium and villous vessel endothelium
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

As susceptibility to many adult disorders originates in utero, we here hypothesized that fetal sex influences gene expression in placental cells and produces functional differences in human placentas. We found that fetal sex differentially affects gene expression in a cell-phenotype dependent manner among all four placental cell-phenotypes studied: cytotrophoblasts, syncytiotrophoblasts, arterial endothelial cells and venous endothelial cells. The markedly enriched pathways in males were identified to be signaling pathways for graft-versus-host disease as well as the immune and inflammatory systems, both supporting the hypothesis that there is reduced maternal-fetal compatibility for male fetuses.

Publication Title

The human placental sexome differs between trophoblast epithelium and villous vessel endothelium.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE59126
Different Preference of Degradome in Invasion versus Angiogenesis
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We hypothesized altered expression of Proteases in calls capable of physiological invasion vs angiogenesis. We analyzed trophoblasts isolated from first trimester placenta that are invasive, and placental endothelial cells, that gave a high angiogenic potential. We found different expression levels of most proteases.

Publication Title

Different Preference of Degradome in Invasion versus Angiogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28385
Endothelial differentiation potential of human amnion-derived mesenchymal stromal cells (hAMSC)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Mesenchymal stromal cells (MSC) are multipotent cells that potentially promote angiogenesis. Especially MSC derived from the amnionic membrane of human term placentas (hAMSC) are promising candidates for a therapeutic use in vascular diseases, as cells can be isolated using non-invasive methods and are immunologically tolerated in vivo. In this study, we wanted to evaluate the endothelial differentiation potential of hAMSC.

Publication Title

Amnion-derived mesenchymal stromal cells show angiogenic properties but resist differentiation into mature endothelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69086
Pigment epithelium derived factor (PEDF): a novel trophoblast derived factor limiting feto-placental angiogenesis in late pregnancy
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We hypothesized that the trophoblast secretes anti-angiogenic factors, which increase in late pregnancy to limit angiogenesis. Therefore, we determined the paracrine effect of primary human trophoblasts from early versus late pregnancy on the angiogenic potential of isolated feto-placental endothelial cells.

Publication Title

Pigment epithelium-derived factor (PEDF): a novel trophoblast-derived factor limiting feto-placental angiogenesis in late pregnancy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9773
Gene expression profiling of trophoblast cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Invasion of cytotrophoblasts into uterine tissues is essential for placental development. To identify molecules regulating trophoblast invasion, mRNA signatures of purified villous (CTB, poor invasiveness) and extravillous (EVT, high invasiveness) trophoblasts isolated from first trimester human placentae and villous explant cultures, respectively, were compared using GeneChip analyses yielding 991 invasion/migration related transcripts. Several genes involved in physiological and pathologic cell invasion, including ADAM-12,-19,-28 as well as Spondin-2, were upregulated in EVT. Pathway prediction analyses identified several functional modules associated with either the invasive or the non-invasive trophoblast phenotype. One of the genes which were downregulated in the invasive mRNA pool, heme oxygenase-1 (HO-1), was selected for functional analyses. Real-time PCR analyses, Western blottting, and immunofluorescene of first trimester placentae and differentiating villous explant cultures demonstrated downregulation of HO-1 in invasive EVT as compared to CTB. Modulation of HO-1 expression in loss-of as well as gain-of function cell models (BeWo and HTR8/SVneo, respectively) demonstrated an inverse relationship of HO-1 expression with trophoblast migration in transwell and wound healing assays. Importantly, HO-1 expression led to an increase in protein levels and activity of the nuclear hormone receptor PPARgamma. Pharmacological inhibition of PPARgamma abrogated the inhibitory effects of HO-1 on trophoblast migration. Collectively, our results demonstrate that gene expression profiling of EVT and CTB can be used to unravel novel regulators of cell invasion. Accordingly, we identify heme oxygenase-1 as a negative regulator of trophoblast motility acting via upregulation of PPARgamma.

Publication Title

Identification of novel trophoblast invasion-related genes: heme oxygenase-1 controls motility via peroxisome proliferator-activated receptor gamma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE103552
Human Feto-placental Arterial and Venous Endothelial Cells are Differentially Programmed by Gestational Diabetes Mellitus Resulting in Cell-specific Barrier Function Changes
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We performed genome-wide methylation analysis of primary feto-placental arterial and venous endothelial cells from healthy (AEC and VEC) and GDM complicated pregnancies (dAEC and dVEC). Parallel transcriptome analysis identified variation in gene expression linked to GDM-associated DNA methylation, implying a direct functional link. Pathway analysis found that genes altered by exposure to GDM clustered to functions associated with Cell Morphology and Cellular Movement in both AEC and VEC. Further functional analysis demonstrated that GDM exposed cells have altered actin organization and barrier function.

Publication Title

Human fetoplacental arterial and venous endothelial cells are differentially programmed by gestational diabetes mellitus, resulting in cell-specific barrier function changes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57459
Identification of targets regulated by SELP in HSC
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To understand the underlying mechanism by which Alox15 gene is required by HSCs, we performed a comparative DNA microarray analysis using total RNA isolated from wild type Lin-Sca-1+c-Kit+, SELP-/- Lin-Sca-1+c-Kit+. The result was validated by quantitative real-time PCR analysis of wild type Lin-Sca-1+c-Kit+ and SELP-/- Lin-Sca-1+c-Kit+.

Publication Title

Arachidonate 15-lipoxygenase is required for chronic myeloid leukemia stem cell survival.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE92861
Expression data from individual MEF2A isoform knockdown in neonatal rat ventricular myocytes (NRVMs)
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Regulation of homeostasis and development of cardiac muscle tissues is controlled by a core set of transcription factors. The MEF2 family plays a critical role in these processes.

Publication Title

Antagonistic regulation of cell-cycle and differentiation gene programs in neonatal cardiomyocytes by homologous MEF2 transcription factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54500
Role of H3K79 methylation states in HOX gene expression and leukemogenesis
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE37464
Pleiotropic Effects of the Trichloroethylene-Associated P81S VHL Mutation on Metabolism, Apoptosis and ATM-Mediated DNA Damage Response
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Gene expression data from VHL teratomas comparing genes differentially expressed based on apoptotic response to tumor microenvironment.

Publication Title

Pleiotropic effects of the trichloroethylene-associated P81S VHL mutation on metabolism, apoptosis, and ATM-mediated DNA damage response.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact