refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 460 results
Sort by

Filters

Technology

Platform

accession-icon GSE79184
CCL4 Secretion By Interleukin-15 Dendritic Cells Directs Superior Recruitment Of Cd56+ Cytolytic Lymphocytes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A key requisite for the success of a dendritic cell (DC)-based vaccine in treating malignancies is the capacity of the DCs to attract immune effector cells for further interaction and activation, considering crosstalk with DCs is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC therapy. In this paper we examine if the so-called interleukin (IL)-15 DC vaccine provides a favorable chemokine milieu for recruiting T cells, natural killer (NK) cells and gamma delta () T cells, in comparison with the IL-4 DCs used routinely for clinical studies, as well as the underlying mechanisms of immune cell attraction by IL-15 DCs. Chemokine signaling is studied both at the RNA level, using microarray data of mature DCs, and functional level, by means of a transwell chemotaxis assay. Important to note, the classic IL-4 DC vaccine falls short to attract the required immune effector lymphocytes, whereas the IL-15 DCs provide a favorable chemokine milieu for recruiting all cytolytic effector cells. The elevated secretion of the chemokine (C-C motif) ligand 4 (CCL4), also known as macrophage inflammatory protein-1 (MIP-1), by IL-15 DCs underlies the enhanced migratory responsiveness of T cells, NK cells and T cells. Namely, neutralizing its receptor CCR5 resulted in a significant drop in migration of the aforementioned effector cells towards IL-15 DCs. These findings should be kept in mind in the design of future DC-based cancer vaccines.

Publication Title

Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP149997
Saccharomyces cerevisiae W303 Raw sequence reads
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome study of 2 Saccharomyces cerevisiae W303 derivatives, one carrying GFP (control) and one carrying aSyn-GFP

Publication Title

Different 8-hydroxyquinolines protect models of TDP-43 protein, α-synuclein, and polyglutamine proteotoxicity through distinct mechanisms.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon GSE8646
The Hay Wells Syndrome-Derived TAp63alphaQ540L Mutant Has Impaired Transcriptional and Cell Growth Regulatory Activity
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

p63 mutations have been associated with several human hereditary disorders characterized by ectodermal dysplasia such as EEC syndrome, ADULT syndrome and AEC syndrome . The location and functional effects of the mutations that underlie these syndromes reveal a striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations in the SAM domain of p63. We report a study on the TAp63a isoform, the first to be expressed during development of the embryonic epithelia, and on its naturally occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L mutation, we generated stable cell lines expressing TAp63a wt, DeltaNp63 alpha or the TAp63 alpha-Q540L mutant protein and used them to systematically compare the cell growth regulatory activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a comprehensive profile of differential gene expression. We found that the Q540L substitution impairs the transcriptional activity of TAp63a and causes misregulation of genes involved in the control of cell growth and epidermal differentiation.

Publication Title

The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP108902
Dihydropyrimidine-thiones and clioquinol synergize to target b-amyloid cellular pathologies through a metal-dependent mechanism
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

DHPM-thiones rescue Ab-mediated toxicity in a metal-dependent manner that strongly synergizes with clioquinol, a known metal-binding and cytoprotective compound. RNA-seq experiments reveal a modest, yet specific effect on metal-responsive genes that do not change with the inactive control compound. Overall design: Treatment of biological replicates with DMSO, 0.8 uM clioquinol, or 20 uM 10{3,3,1} (DHPM-thione) for ~6 hours prior to harvesting of cells and isolation of total RNA.

Publication Title

Dihydropyrimidine-Thiones and Clioquinol Synergize To Target β-Amyloid Cellular Pathologies through a Metal-Dependent Mechanism.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE62232
Large-scale gene expression profiling of 81 hepatocellular carcinomas
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hepatocellular carcinoma (HCC) is ranked second in cancer-associated deaths worldwide. Most cases of HCC are secondary to either a viral hepatitis infection (hepatitis B or C) or cirrhosis (alcoholism being the most common cause of hepatic cirrhosis). It is a complex and heterogeneous tumor due to activation of multiple cellular pathways and molecular alterations.

Publication Title

Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE70323
Reconstruction of microRNA/genes transcriptional regulatory networks of multiple myeloma through in silico integrative genomics analysis
  • organism-icon Homo sapiens
  • sample-icon 246 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Disentangling the microRNA regulatory milieu in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE70319
Reconstruction of microRNA/genes transcriptional regulatory networks of multiple myeloma through in silico integrative genomics analysis [MM, gene]
  • organism-icon Homo sapiens
  • sample-icon 93 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The identification of deregulated miRNA in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In the present study, we take virtue of in silico integrative genomics analysis to generate an unprecedented global view of the transcriptional regulatory networks modulated in MM to define microRNAs impacting in regulatory circuits with potential functional and clinical relevance. miRNA and gene expression profiles in two large representative MM datasets, available from retrospective and prospective clinical trials and encompassing a total of 249 patients at diagnosis, were analyzed by means of two robust computational procedure to identify (i) relevant miRNA/transcription factors/target gene circuits in the disease and (ii) highly modulated miRNA-gene networks in those pathways enriched with miRNA-target gene interactions in specific MM subgroups. The analysis reinforced the pivotal role the miRNA cluster miR-99b/let-7e/miR-125a, specifically deregulated in MM patients with t(4;14) translocation, and disentangled its major relationships with transcriptional relevance. Integrated pathway analyses performed on the expression data of the MM patients stratified according to t(4;14) further allowed to define the pathway composed by the interactions that mainly characterize this MM subset and unravel connected pathways with putative role in the tumor biology.

Publication Title

Disentangling the microRNA regulatory milieu in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE73452
Reconstruction of microRNA/genes transcriptional regulatory networks of multiple myeloma through in silico integrative genomics analysis [PCL, gene]
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The identification of deregulated miRNA in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In the present study, we take virtue of in silico integrative genomics analysis to generate an unprecedented global view of the transcriptional regulatory networks modulated in MM to define microRNAs impacting in regulatory circuits with potential functional and clinical relevance. miRNA and gene expression profiles in two large representative MM datasets, available from retrospective and prospective clinical trials and encompassing a total of 249 patients at diagnosis, were analyzed by means of two robust computational procedure to identify (i) relevant miRNA/transcription factors/target gene circuits in the disease and (ii) highly modulated miRNA-gene networks in those pathways enriched with miRNA-target gene interactions in specific MM subgroups. The analysis reinforced the pivotal role the miRNA cluster miR-99b/let-7e/miR-125a, specifically deregulated in MM patients with t(4;14) translocation, and disentangled its major relationships with transcriptional relevance. Integrated pathway analyses performed on the expression data of the MM patients stratified according to t(4;14) further allowed to define the pathway composed by the interactions that mainly characterize this MM subset and unravel connected pathways with putative role in the tumor biology.

Publication Title

Disentangling the microRNA regulatory milieu in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE27212
Gene expression in spinal cord neurons grown on polyornithine or on carbon nanotube (CNT)-based substrates
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Carbon nanotubes are cylindrically-shaped carbon nanostructures, made up of layers of graphene rolled onto themselves, with diameters similar to those of neuronal processes. In the last decade, CNT have been used as biocompatible growing substrates for neuronal attachment, differentiation and growth. In the perspective of new developments in tissue engineering, and in particular in spinal cord repair strategies, based on the use of CNTs, our aim is to clarify the biophysical interactions between CNTs and spinal cord neurons, studying the development of the morphological and functional characteristics of spinal neurons grown on CNT-based interfaces.

Publication Title

Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP047290
Molecular signatures of heterogeneous stem cell populations are resolved by linking single cell functional assays to single cell gene expression
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The discovery of significant heterogeneity in the self-renewal durability of adult haematopoietic stem cells (HSCs) has challenged our understanding of the molecules involved in population maintenance throughout life. Gene expression studies in bulk populations are difficult to interpret since multiple HSC subtypes are present and HSC purity is typically less than 50% of the input cell population. Numerous groups have therefore turned to studying gene expression profiles of single HSCs, but again these studies are limited by the purity of the input fraction and an inability to directly ascribe a molecular program to a durable self-renewing HSC. Here we combine single cell functional assays with flow cytometric index sorting and single cell gene expression assays to gain the first insight into the gene expression program of HSCs that possess durable self-renewal. This approach can be used in other stem cell systems and sets the stage for linking key molecules with defined cellular functions. Overall design: single-cell RNA-Seq of haematopoietic stem cells

Publication Title

Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact