refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 243 results
Sort by

Filters

Technology

Platform

accession-icon SRP030617
Quantitative assessment of single-cell RNA sequencing methods
  • organism-icon Homo sapiens
  • sample-icon 113 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We generated single-cell transcriptomes from a large number of single cells using several commercially available platforms, in both microliter and nanoliter volumes, and compared performance between them. We benchmarked each method to conventional RNA-seq of the same sample using bulk total RNA, as well as to multiplexed qPCR, which is the current gold standard for quantitative single-cell gene expression analysis. In doing so, we were able to systematically evaluate the sensitivity, precision, and accuracy of various approaches to single-cell RNA-seq. Our results show that it is possible to use single-cell RNA-seq to perform quantitative transcriptome measurements of individual cells, that it is possible to obtain quantitative and accurate gene expression measurements with a relatively small number of sequencing reads, and that when such measurements are performed on large numbers of cells, one can recapitulate the bulk transcriptome complexity, and the distributions of gene expression levels found by single-cell qPCR. Overall design: 109 single-cell human transcriptomes were analyzed in total; 96 using nanoliter volume sample processing on a microfluidic platform, Nextera library prep (biological replicates); 3 using the SMARTer cDNA synthesis kit, Nextera library prep (biological replicates); 3 using the Transplex cDNA synthesis kit, Nextera library prep (biological replicates); 7 using the Ovation Nugen cDNA synthesis kit (biological replicates) where 3 used Nextera library prep and 4 used NEBNext library prep. In addition, 4 bulk RNA samples were sequenced: bulk RNA generated using ~1 million pooled cells was used to make bulk libraries, 2 of which were made using SMARTer cDNA synthesis kit (technical replicates) and 2 made using Superscript RT kit with no amplification (technical replicates). All 4 bulk samples were made into libraries using Nextera.

Publication Title

Quantitative assessment of single-cell RNA-sequencing methods.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6883
The prognostic role of a gene signature from tumorigenic breast-cancer cells.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Breast cancers contain a minority population of cancer cells characterized by CD44 expression but low or undetectable levels of CD24 (CD44+CD24-/low) that have higher tumorigenic capacity than other subtypes of cancer cells. METHODS: We compared the gene-expression profile of CD44+CD24-/low tumorigenic breast-cancer cells with that of normal breast epithelium. Differentially expressed genes were used to generate a 186-gene invasiveness gene signature (IGS), which was evaluated for its association with overall survival and metastasis-free survival in patients with breast cancer or other types of cancer. RESULTS: There was a significant association between the IGS and both overall and metastasis-free survival (P<0.001, for both) in patients with breast cancer, which was independent of established clinical and pathological variables. When combined with the prognostic criteria of the National Institutes of Health, the IGS was used to stratify patients with high-risk early breast cancer into prognostic categories (good or poor); among patients with a good prognosis, the 10-year rate of metastasis-free survival was 81%, and among those with a poor prognosis, it was 57%. The IGS was also associated with the prognosis in medulloblastoma (P=0.004), lung cancer (P=0.03), and prostate cancer (P=0.01). The prognostic power of the IGS was increased when combined with the wound-response (WR) signature. CONCLUSIONS: The IGS is strongly associated with metastasis-free survival and overall survival for four different types of tumors. This genetic signature of tumorigenic breast-cancer cells was even more strongly associated with clinical outcomes when combined with the WR signature in breast cancer.

Publication Title

The prognostic role of a gene signature from tumorigenic breast-cancer cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP096911
Neuron-specific transcriptome response to loss of shep
  • organism-icon Drosophila melanogaster
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report RNA-seq data obtained from FACS-isolated live neurons at third instar larval or P14 pupal stage, and from BG3 cells. RNA from neurons with RNAi-based loss of shep or GFP control is used to construct stranded RNA-seq library. RNA from BG3 cells treated with dsRNA targeting shep or GFP is used to construct RNA-seq library. Overall design: RNA-seq data of loss-of-shep neurons and control neurons in larval and pupal stages, and from shep-depleted or control BG3 cells.

Publication Title

Shep regulates <i>Drosophila</i> neuronal remodeling by controlling transcription of its chromatin targets.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP007216
Messenger RNA is a functional component of a chromatin insulator complex
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II, Illumina HiSeq 2000

Description

Chromatin insulators are DNA-protein complexes situated throughout the genome capable of demarcating independent transcriptional domains. Previous studies point to an important role for RNA in gypsy chromatin insulator function in Drosophila; however, the identity of these putative insulator-associated RNAs is not currently known. Here we utilize RNA-immunoprecipitation and high throughput sequencing (RIP-seq) to isolate RNAs stably associated with gypsy insulator complexes. Strikingly, these RNAs correspond to specific sense-strand, spliced, and polyadenylated mRNAs, including two insulator protein transcripts. In order to assess the functional significance of these associated mRNAs independent of their coding function, we expressed untranslatable versions of these transcripts in developing flies and observed both alteration of insulator complex nuclear localization as well as improvement of enhancer-blocking activity. Together these data suggest a novel, noncoding mechanism by which certain mRNAs contribute to chromatin insulator function. Overall design: RIP-seq of insulator proteins with different library preparations and multiple biological replicates

Publication Title

Messenger RNA is a functional component of a chromatin insulator complex.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE158116
Transcriptional landscape of BE disease progression
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Our mouse model of BE in which overexpression of IL-1b in the squamous esophagus induces chronic inflammation leads to metaplasia and dysplasia at the squamo-columnar junction (SCJ) in the mouse gastro-esophageal junction resembles the human disease. Adult L2-IL1b mice were employed to investigate changes to the transcriptional landscape at the SCJ during disease progression from BE to EAC following pharmaceutical or genetic perturbations of interest to BE biology.

Publication Title

Notch Signaling Mediates Differentiation in Barrett's Esophagus and Promotes Progression to Adenocarcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21348
Reprogramming of fibroblasts from Fragile-X patients to induced pluripotent stem cells (iPS) with defined factors
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Human iPS cells derived from normal and Fragile-X fibroblasts in order to assess the capability of Fragile-X iPS cells to be used as a model for different aspects of Fragile-X syndrome. Microarry analysis used to compare global gene expression between human ES cells, the normal and the mutant iPS cells and the original fibroblasts, to demonstrate that the overall reprogramming process succeeded, and that the FX-iPS cells are fully reprogrammed cells.

Publication Title

Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon GSE42839
Expression changes in MEL cells upon differentiation and Ldb1 knockdown
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Carbonic anhydrase 1 (Car1), an early specific marker of the erythroid differentiation, has been used to distinguish fetal and adult erythroid cells since its production closely follows the - to -globin transition, but the molecular mechanism underlying transcriptional regulation of Car1 is unclear. Here, we show that Car1 mRNA decreases significantly when erythroid differentiation is induced in MEL cells. The Ldb1 protein complex including GATA1/SCL/LMO2 binds to the Car1 promoter in uninduced cells and reduced enrichment of the complex during differentiation correlates with loss of Car1 expression. Knockdown of Ldb1 results in a reduction of Ser2 phosphorylated RNA Pol II and Cdk9 at the Car1 promoter region, suggesting that Ldb1 is required for recruitment of Pol II as well as the transcription regulator P-TEFb to enhance elongation of Car1 transcripts. Taken together, these data show that Ldb1 forms a regulatory complex to maintain Car1 expression in erythroid cells.

Publication Title

Ldb1 regulates carbonic anhydrase 1 during erythroid differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14416
ICSBP-mediated immune protection against BCR-ABL-induced leukemia requires the CCL6 and CCL9 chemokines
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Interferon is effective at inducing complete remissions in patients with Chronic Myelogenous Leukemia (CML), and evidence supports an immune mechanism. Here we show that the Type I Interferons (alpha and beta) regulate expression of the Interferon consensus sequence binding protein (ICSBP) in bcr-abl transformed cells and as shown previously for ICSBP, induce a vaccine-like immunoprotective effect in a murine model of bcr-abl induced leukemia. We identify the chemokines CCL6 and CCL9 as genes prominently induced by the Type I Interferons and ICSBP, and demonstrate that these immunomodulators are required for the immunoprotective effect of ICSBP expression. Insights into the role of these chemokines in the anti-leukemic response of interferons suggest new strategies for immunotherapy of CML.

Publication Title

ICSBP-mediated immune protection against BCR-ABL-induced leukemia requires the CCL6 and CCL9 chemokines.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1491
Identification of Inhibitors of Auxin Transcriptional Activation via Chemical Genetics in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Approximately 2.5 mg dry Col-0 seedlings were surface sterilized and stratified for 2 days at 4degreesC in liquid media containing 1.5% sucrose (w/v) before being transferred to light with constant shaking at 100 rpm on an orbital shaker. After 7 days, the seedling clusters were subjected to the treatments for 1 hr followed by total RNA isolation using the RNAqueous kit (Ambion). Each treatment was performed in triplicate or quadruplicate. All labeling (Enzo) and hybridization (Affymetrix) procedures were performed as directed by the manufacturers. Raw probe intensities output by the Affymetrix MAS software were processed using the RMA algorithm to obtain an expression measure for each gene on each array.

Publication Title

Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE59037
Dissecting engineered cell types and enhancing cell fate conversion via CellNet
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells.

Publication Title

Dissecting engineered cell types and enhancing cell fate conversion via CellNet.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact