refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon SRP140095
Inhibition of EGFR signaling downregulates K-RAS mutated activity
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

KRAS mutations are the ost abundand driver mutations found in lung adenocarcinoma patients. Unfortunately, there are no clinical approved inhibitors available, to directly target mutant forms of KRAS. The aim of the study was to unravel the impact of upstream Egfr activation in signaling of mutated K-ras. We found that upregulation of G12D mutant Kras induced genes was significantly impaired when Egfr was knocked out. Our data suggests that signaling of mutant Kras depends on upstream activation. This finding may be exploited therapeutically by targeting EGFR in KRAS mutant patients. Overall design: We isolated mouse alveolar type II cells and induced the Kras G12D mutation, with and without concomitant Egfr knockout, in vitro. Cells lysates were analyzed 5 days following transgene induction.

Publication Title

JAK-STAT inhibition impairs K-RAS-driven lung adenocarcinoma progression.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE32497
GENOME-WIDE CpG ISLAND METHYLATION ANALYSIS IN NON-SMALL CELL LUNG CANCER PATIENTS
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide CpG island methylation analyses in non-small cell lung cancer patients.

Sample Metadata Fields

Specimen part, Disease, Cell line, Treatment

View Samples
accession-icon GSE32496
GENOME-WIDE CpG ISLAND METHYLATION ANALYSIS IN NON-SMALL CELL LUNG CANCER PATIENTS [Affymetrix expression data]
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Epigenetic changes largely contribute to the regulation of gene expression in cancer cells. DNA methylation is part of the epigenetic gene regulation complex which is relevant for the pathogenesis of cancer. We performed a genome-wide search for methylated CpG islands in tumors and corresponding non-malignant lung tissue samples of 101 stage I-III non-small cell lung cancer (NSCLC) patients by combining methylated DNA immunoprecipitation and microarray analysis using NimbleGens 385K Human CpG Island plus Promoter arrays. By testing for differences in methylation between tumors and corresponding non-malignant lung tissues, we identified 298 tumor-specifically methylated genes. From many of these genes epigenetic regulation was unknown so far. Gene Ontology analysis revealed an over-representation of genes involved in regulation of gene expression and cell adhesion. Expression of 182 of 298 genes was found to be upregulated after 5-aza-2-deoxycytidine (Aza-dC) and/or trichostatin A (TSA) treatment of 3 NSCLC cell lines by Affymetrix microarray analysis. In addition, methylation of selected genes in primary NSCLCs and corresponding non-malignant lung tissue samples were analyzed by methylation-sensitive high resolution melting analysis (MS-HRM). Our results obtained by MS-HRM analysis confirmed our data obtained by MeDIP-chip analysis. Moreover, by comparing methylation results from MeDIP-chip analysis with clinico-pathological parameters of the patients we observed methylation of HOXA2 as potential parameter for shorter disease-free survival of NSCLC patients. In conclusion, using a genome-wide approach we identified a large number of tumor-specifically methylated genes in NSCLC patients. Our results stress the importance of DNA methylation for the pathogenesis of NSCLCs.

Publication Title

Genome-wide CpG island methylation analyses in non-small cell lung cancer patients.

Sample Metadata Fields

Cell line, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact