refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 239 results
Sort by

Filters

Technology

Platform

accession-icon GSE18803
Adult and Neonatal dorsal horn gene expression 7 day post sciatic nerve SNI injury
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

As rats do not develop neuropathic pain like hypersensitivity as neonates post nerve injury but do as adults we have used these arrays to help define the processes involved in this process.

Publication Title

T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE56704
Densely Ionizing Radiation Effects on the Microenvironment Promote Aggressive Trp53 Null Mammary Carcinomas
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Densely ionizing radiation is a major component of the space radiation environment and has potentially greater carcinogenic effect compared to sparsely ionizing radiation that is prevalent in the terrestrial environment. It is unknown to what extent the irradiated microenvironment contributes to the differential carcinogenic potential of densely ionizing radiation. To address this gap, 10-week old BALB/c mice were irradiated with 100 cGy sparsely ionizing g-radiation or 10, 30, or 80 cGy of densely ionizing, 350 MeV/amu Si particles and transplanted 3 days later with syngeneic Trp53 null mammary fragments. Tumor appearance was monitored for 600 days. Tumors arising in Si-particle irradiated mice had a shorter median time to appearance, grew faster and were more likely to metastasize. Most tumors arising in sham-irradiated mice were ER-positive, pseudo-glandular and contained both basal keratin 14 and luminal keratin 8/18 cells (designated K14/18), while most tumors arising in irradiated hosts were K8/18 positive (designated K18) and ER negative. Comparison of K18 vs K14/18 tumor expression profiles showed that genes increased in K18 tumors were associated with ERBB2 and KRAS while decreased genes overlapped with those down regulated in metastasis and by loss of E-cadherin. Consistent with this, K18 tumors grew faster than K14/18 tumors and more mice with K18 tumors developed lung metastases compared to mice with K14/18 tumors. However, K18 tumors arising in Si-particle irradiated mice grew even faster and were more metastatic compared to control mice. A K18 Si-irradiated host profile was enriched in genes involved in mammary stem cells, stroma, and Notch signaling. Thus systemic responses to densely ionizing radiation enriches for a ER-negative, K18-positive tumor, whose biology is more aggressive compared to similar tumors arising in non-irradiated hosts.

Publication Title

Densely ionizing radiation acts via the microenvironment to promote aggressive Trp53-null mammary carcinomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8240
EMT initiation in MCF10A cells subjected to ionizing radiation and treatment with transforming growth factor beta-1.
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Transforming growth factor beta-1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGFbeta (0.4 ng/ml), or double-treated. All double-treated (IR+TGFbeta) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, beta-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGFbeta alone elicited EMT, even though IR increased chronic TGFbeta signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGFbeta-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGFbeta, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

Publication Title

Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE76679
Motor cortex after C3 lesion
  • organism-icon Rattus norvegicus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Gene expression analysis of motor cortex after spinal C3 lesion

Publication Title

A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE48392
Response of mammary tissue to high-LET HZE particle (Silicon ions) radiation or low-LET gamma-rays
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Transcriptional profiling of mammary tissue irradiated at 10 weeks of age with either 100 cGy sparsely ionizing gamma-rays, or 10 cGy or 30 cGy densely ionizing radiation (350 MeV/amu Si). Mammary tissue was collected 1 weeks, 4 weeks, and 12 weeks post-irradiation.

Publication Title

Irradiation of juvenile, but not adult, mammary gland increases stem cell self-renewal and estrogen receptor negative tumors.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE102937
Mechanistic differences in neuropathic pain modalities revealed by correlating behavior with global expression profiling
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mechanistic Differences in Neuropathic Pain Modalities Revealed by Correlating Behavior with Global Expression Profiling.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP115543
Mechanistic differences in neuropathic pain modalities revealed by correlating behavior with global expression profiling (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Chronic neuropathic pain is a major morbidity of neural injury, yet its mechanisms are incompletely understood. Hypersensitivity to previously non-noxious stimuli (allodynia) is a common symptom. Here, we demonstrate that the onset of cold hypersensitivity precedes tactile allodynia and this temporal divergence was associated with major differences in global gene expression in dorsal root ganglia. Transcripts whose expression correlate with the onset of cold allodynia were nociceptor-related whereas those correlating with tactile hypersensitivity were enriched for immune cell activity. Selective ablation of TrpV1 lineage nociceptors resulted in mice that did not acquire cold allodynia but developed normal tactile hypersensitivity. Whereas depletion of macrophages or T cells reduced neuropathic tactile allodynia but not cold hypersensitivity. We conclude that neuropathic pain is contributed to by reactive processes of sensory neurons and immune cells, each leading to distinct forms of pain hypersensitivity, potentially allowing effective drug development targeted to each pain modality. Overall design: High temporal analysis of global gene expression in the DRG following spared nerve injury (SNI) correlated with behavior taken at the same time points. Expression and behavioral sensitivity taken at least daily over the first 10 days post SNI.

Publication Title

Mechanistic Differences in Neuropathic Pain Modalities Revealed by Correlating Behavior with Global Expression Profiling.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE89224
Mechanistic differences in neuropathic pain modalities revealed by correlating behavior with global expression profiling [microarray]
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Chronic neuropathic pain is a major morbidity of neural injury, yet its mechanisms are incompletely understood. Hypersensitivity to previously non-noxious stimuli (allodynia) is a common symptom. Here, we demonstrate that the onset of cold hypersensitivity precedes tactile allodynia and this temporal divergence was associated with major differences in global gene expression in dorsal root ganglia (DRG). Transcripts whose expression correlate with the onset of cold allodynia were nociceptor-related, whereas those correlating with tactile hypersensitivity were enriched for immune cell activity. Selective ablation of TrpV1 lineage nociceptors resulted in mice that did not acquire cold allodynia but developed normal tactile hypersensitivity. Whereas, depletion of macrophages or T cells reduced neuropathic tactile allodynia but not cold hypersensitivity. We conclude that neuropathic pain is contributed to by reactive processes of sensory neurons and immune cells, each leading to distinct forms of pain hypersensitivity, potentially allowing effective drug development targeted to each pain modality.

Publication Title

Mechanistic Differences in Neuropathic Pain Modalities Revealed by Correlating Behavior with Global Expression Profiling.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE30691
Multiple chronic pain states are associated with a common amino acid-changing allele in KCNS1
  • organism-icon Rattus norvegicus
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Not all patients with nerve injury develop neuropathic pain. The extent of nerve damage and age at the time of injury are two of the few risk factors identified to date. In addition, preclinical studies show that neuropathic pain variance is heritable. To define such factors further, we performed a large-scale gene profiling experiment which plotted global expression changes in the rat dorsal root ganglion in three peripheral neuropathic pain models. This resulted in the discovery that the potassium channel alpha subunit KCNS1, involved in neuronal excitability, is constitutively expressed in sensory neurons and markedly downregulated following nerve injury. KCNS1 was then characterized by an unbiased network analysis as a putative pain gene, a result confirmed by single nucleotide polymorphism association studies in humans. A common amino acid changing allele, the 'valine risk allele', was significantly associated with higher pain scores in five of six independent patient cohorts assayed (total of 1359 subjects). Risk allele prevalence is high, with 18-22% of the population homozygous, and an additional 50% heterozygous. At lower levels of nerve damage (lumbar back pain with disc herniation) association with greater pain outcome in homozygote patients is P = 0.003, increasing to P = 0.0001 for higher levels of nerve injury (limb amputation). The combined P-value for pain association in all six cohorts tested is 1.14 E-08. The risk profile of this marker is additive: two copies confer the most, one intermediate and none the least risk. Relative degrees of enhanced risk vary between cohorts, but for patients with lumbar back pain, they range between 2- and 3-fold. Although work still remains to define the potential role of this protein in the pathogenic process, here we present the KCNS1 allele rs734784 as one of the first prognostic indicators of chronic pain risk. Screening for this allele could help define those individuals prone to a transition to persistent pain, and thus requiring therapeutic strategies or lifestyle changes that minimize nerve injury.

Publication Title

Multiple chronic pain states are associated with a common amino acid-changing allele in KCNS1.

Sample Metadata Fields

Age

View Samples
accession-icon GSE110164
Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact