refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE78159
The fusion protein SS18-SSX1 employs core Wnt pathway transcription factors to induce a partial Wnt signature in synovial sarcoma
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Expression of the SS18/SYT-SSX fusion protein is believed to underlie the pathogenesis of synovial sarcoma (SS). Recent evidence suggests that deregulation of the Wnt pathway may play an important role in SS but the mechanisms whereby SS18-SSX might affect Wnt signaling remain to be elucidated. Here, we show that SS18/SSX tightly regulates the elevated expression of the key Wnt target AXIN2 in primary SS. SS18-SSX is shown to interact with TCF/LEF, TLE and HDAC but not -catenin in vivo and to induce Wnt target gene expression by forming a complex containing promoter-bound TCF/LEF and HDAC but lacking -catenin. Our observations provide a tumor-specific mechanistic basis for Wnt target gene induction in SS that can occur in the absence of Wnt ligand stimulation.

Publication Title

The fusion protein SS18-SSX1 employs core Wnt pathway transcription factors to induce a partial Wnt signature in synovial sarcoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE18150
DZNep-treated glioblastoma multiforme cancer stem cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Overexpression of the Polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM) (1). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep), or its specific down-regulation by shRNA, strongly impairs GBM cancer stem cell self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM cancer stem cells, we found the expression of c-myc, recently reported to be essential for GBM cancer stem cells, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated down-regulation of EZH2 in combination with chromatin immunoprecipitation (ChIP) experiments revealed that c-myc is a direct target of EZH2 in GBM cancer stem cells. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM cancer stem cell maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.

Publication Title

EZH2 is essential for glioblastoma cancer stem cell maintenance.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE31215
Gene expression analysis of human pediatric mesenchymal stem cells (hpMSCs) upon expression of EWS-FLI-1
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.

Publication Title

EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11302
Gene expression analysis upon exposure of hESCs to novel set of self-renewal and differentiation compounds
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina humanRef-8 v2.0 expression beadchip

Description

Here we present a strategy to adapt hESCs to high-throughput screening (HTS) conditions, resulting in an assay suitable for the discovery of small molecules that drive hESC self-renewal or differentiation. Use of this new assay has led to the identification of several currently marketed drugs and natural compounds promoting short-term hESC maintenance and compounds directing early lineage choice. Global gene expression analysis upon drug treatment reveals overlapping and novel pathways correlated to hESC self-renewal and differentiation. Our results demonstrate feasibility of hESC-based HTS and enhance the available repertoire of chemical compounds for manipulating hESC fate.

Publication Title

High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69079
Expression data of sleeping, waking, and sleep deprived adult heterozygous aldh1l1 eGFP-L10a mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.

Publication Title

Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1 - eGFP-L10a mice.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE17584
Transcriptional effects of CRP* expression in Escherichia coli
  • organism-icon Escherichia coli
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Escherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of the native crp gene with a catabolite repression mutant (referred to as crp*) alleviates diauxic effects in E. coli and enables co-utilization of glucose and other sugars. While previous studies have examined the effects of expressing CRP* mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects of CRP* expression.

Publication Title

Transcriptional effects of CRP* expression in Escherichia coli.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23881
Kinetic gene expression profiles of chicken macrophage HD11 cells in response to endotoxin from Salmonella typhimurium-798
  • organism-icon Gallus gallus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

HD11 cells were stimulated with 1 ug/ml endotoxin from ST-798 for 1, 2, 4 and 8 hours

Publication Title

Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon SRP071252
Transcriptome of new DGCR8_KO mouse embryonic stem cells generated by paired CRISPR/Cas9 approach
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study was to obtain the trasncriptome of DGCR8_KO mESCs to compare it with the transcriptome of WT mESCs (deposit separately). Overall design: mRNA profiles of DGCR8_KO mouse embryonic stem cells were generated by deep sequencing, in duplicate, using Illumina HiSeq2000.

Publication Title

Noncanonical function of DGCR8 controls mESC exit from pluripotency.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE48369
Expression data of sleeping, waking, and sleep deprived in adult heterozygous Cnp eGFP-L10a mice
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.

Publication Title

Effects of sleep and wake on oligodendrocytes and their precursors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP046752
RNA-Sequencing of lean, intermediate, and obese pigs
  • organism-icon Sus scrofa
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We sequenced mRNA from subcuteneous adipose tissue of 36 pigs (12 Low, 12 Mean and 12 High) to investigate expression profiling of obesity (porcine model) Overall design: Examination of mRNA levels in different obese states in a porcine model for human obesity

Publication Title

An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact