refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2713 results
Sort by

Filters

Technology

Platform

accession-icon SRP124865
Novel Principles of Cellular Reprogramming Revealed by Prospective Isolation and Characterization of Rare Intermediates Poised to Generate iPSCs [RNA-seq 1]
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cellular reprogramming converts differentiated cells into induced pluripotent stem cells (iPSCs). However, this process is extremely inefficient, complicating mechanistic studies. Here, we identified and molecularly characterized rare, early intermediates poised to reprogram with up to 100% efficiency, without perturbing additional genes or pathways. Analysis of these cells uncovered transcription factors (e.g., Tfap2c, Bex2), which are critical for reprogramming but dispensable for pluripotency maintenance. Additionally, we observed striking patterns of chromatin hyperaccessibility at pluripotency loci, which preceded gene expression in poised intermediates. Finally, inspection of these hyperaccessible regions revealed a previously unappreciated early wave of DNA demethylation, which is uncoupled from de novo methylation of somatic regions late in reprogramming. Overall, our study underscores the importance of investigating the rare intermediates poised to produce iPSCs, provides novel insights into the mechanisms of reprogramming, and offers a valuable resource for the dissection of transcriptional and epigenetic dynamics intrinsic to cell fate change. Overall design: RNA-seq of reprogramming intermediates (11 cell types in triplicate).

Publication Title

Prospective Isolation of Poised iPSC Intermediates Reveals Principles of Cellular Reprogramming.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP124868
Novel Principles of Cellular Reprogramming Revealed by Prospective Isolation and Characterization of Rare Intermediates Poised to Generate iPSCs [RNA-seq 2]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cellular reprogramming converts differentiated cells into induced pluripotent stem cells (iPSCs). However, this process is extremely inefficient, complicating mechanistic studies. Here, we identified and molecularly characterized rare, early intermediates poised to reprogram with up to 100% efficiency, without perturbing additional genes or pathways. Analysis of these cells uncovered transcription factors (e.g., Tfap2c, Bex2), which are critical for reprogramming but dispensable for pluripotency maintenance. Additionally, we observed striking patterns of chromatin hyperaccessibility at pluripotency loci, which preceded gene expression in poised intermediates. Finally, inspection of these hyperaccessible regions revealed a previously unappreciated early wave of DNA demethylation, which is uncoupled from de novo methylation of somatic regions late in reprogramming. Overall, our study underscores the importance of investigating the rare intermediates poised to produce iPSCs, provides novel insights into the mechanisms of reprogramming, and offers a valuable resource for the dissection of transcriptional and epigenetic dynamics intrinsic to cell fate change. Overall design: RNA-seq of reprogramming intermediates (6 cell types in duplicate).

Publication Title

Prospective Isolation of Poised iPSC Intermediates Reveals Principles of Cellular Reprogramming.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP002411
A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity
  • organism-icon Danio rerio
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzer

Description

Here we identify a Dicer-independent miRNA biogenesis pathway that employs the slicer catalytic activity of Argonaute2 (Ago2). To uncover Dicer-independent miRNAs, we sequenced small RNAs in wild type, maternal-zygotic dicer (MZdicer) and MZago2 mutants, using zebrafish as a model system. We find that, in contrast to other miRNAs, miR-451 levels were increased in MZdicer but drastically reduced in the MZago2 mutants. We show that pre-miR-451 processing requires Ago2 catalytic activity in vivo. MZago2 mutant embryos display delayed erythrocyte maturation that can be rescued by wild type Ago2 or miR-451 duplex but not catalytically dead Ago2. We propose that Ago2-mediated cleavage of a subset of pre-miRNAs, followed by uridylation and trimming, generates functional miRNAs in a Dicer-independent manner. Overall design: Examination of small RNAs (18 to 35 nucleotides) in 3 different zebrafish genotypes (wild type, MZago2, MZdicer) at 48 hours post-fertilization.

Publication Title

A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE76699
A serial screen for roadblocks to reprogramming identifies the sumoylation effector protein Sumo2
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The generation of induced pluripotent stem cells (iPSCs) from differentiated cells following forced expression of Oct4, Klf4, Sox2 and c-Myc (OKSM) is slow and inefficient, suggesting that transcription factors have to overcome somatic barriers that resist cell fate change. Here, we performed an ubiased serial shRNA enrichment screen to identify novel repressors of somatic cell reprogramming into iPSCs. This effort uncovered the sumoylation effector protein Sumo2 as one of the strongest roadblocks to iPSC formation. Depletion of Sumo2 both enhances and accelerates reprogramming, yielding transgene-independent, chimera-competent iPSCs after as little as 36 hours of OKSM expression. We further show that the Sumo2 pathway acts independently of exogenous c-Myc expression and in parallel with small molecule enhancers of reprogramming. Critically, suppression of SUMO2 also promotes the generation of human iPSCs. Together, our results reveal sumoylation as a crucial post-transcriptional mechanism that resists the acquisition of pluripotency from fibroblasts using defined factors.

Publication Title

A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE57459
Identification of targets regulated by SELP in HSC
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To understand the underlying mechanism by which Alox15 gene is required by HSCs, we performed a comparative DNA microarray analysis using total RNA isolated from wild type Lin-Sca-1+c-Kit+, SELP-/- Lin-Sca-1+c-Kit+. The result was validated by quantitative real-time PCR analysis of wild type Lin-Sca-1+c-Kit+ and SELP-/- Lin-Sca-1+c-Kit+.

Publication Title

Arachidonate 15-lipoxygenase is required for chronic myeloid leukemia stem cell survival.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42478
Defining a molecular roadmap of cellular reprogramming into iPS cells
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A molecular roadmap of reprogramming somatic cells into iPS cells.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE42379
Defining a molecular roadmap of cellular reprogramming into iPS cells [mRNA profiling]
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Factor induced reprogramming is a slow and inefficient process with only rare cells progressing towards induced pluripotent stem cells (iPSCs). Owing to these restraints, mechanistic studies have been limited to analyses of heterogeneous bulk populations undergoing reprogramming and partially reprogrammed cell lines. Here, by combining surface markers (Thy1, SSEA1) and an Oct4-GFP fluorescent reporter allele, we analyzed defined intermediate cell populations poised to becoming iPSCs at the transcriptional and epigenetic levels using genome-wide and single cell technologies. We found that factor-induced reprogramming elicits two discernible transcriptional waves that are characterized by the initial extinction of the somatic gene expression program and the concomitant acquisition of an ESC-like proliferative and metabolic state, followed by the activation of an embryonic pluripotent state primed for differentiation. The first wave is mostly driven by gene activation through c-Myc and gene repression by Klf4, whereas the second wave is a result of gradually activated Oct4/Sox2 targets in cooperation with Klf4 targets and other downstream regulators. While microRNA expression and enrichment for individual histone modifications (H3K4me3 or H3K27me3 enriched promoters) mirrored the observed biphasic transcriptional pattern, the establishment of bivalent domains (H3K4me3/H3K27me3 enriched promoters) occurred more gradually. In contrast, changes in DNA methylation took place predominantly at the end of reprogramming when cells assumed a stable pluripotent state. Cells that became refractory to reprogramming activated the first but failed to initiate the second transcriptional wave. However, introduction of additional copies of the reprogramming transgenes into these cells rescued their ability to form iPSCs, indicating that suboptimal transcription factor levels are a limiting factor for efficient iPSC formation. This integrative analysis allowed us to identify novel genes and microRNAs that enhance reprogramming and surface markers that further subdivide intermediate cell populations. Collectively, our data offer new mechanistic insights into the nature and sequence of molecular events inherent to cellular reprogramming and provide a valuable resource of molecules that may act as roadblocks during iPSC formation.

Publication Title

A molecular roadmap of reprogramming somatic cells into iPS cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50658
Two faces of polarized macrophages: differential effects of M1 and M2 macrophage subtypes on lung cancer progression
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Macrophages in tumor microenvironment have been characterized as M1- and M2-polarized subtypes. This study sought to investigate the effects of different macrophage subtypes on the biological behavior and global gene expression profiles of lung cancer cells. Expression microarray and bioinformatics analyses indicated that the different macrophage subtypes mainly regulated genes involved in cell cycle, cytoskeletal remodeling, coagulation, cell adhesion and apoptosis pathways in A549 cells, a pattern that correlated with the altered behavior of A549 cells observed after coculture with macrophage subtypes.

Publication Title

Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE16014
Expression data from effects of Ganoderma lucidum polysaccharides F3 on human monocytic leukemia cell line THP-1
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

In order to identify patterns of gene expression associated with biological effects in THP-1 cells induced by F3, we performed a transcriptomic analysis on the THP-1 control and F3-treated THP-1 cells by oligonucleotide microarray

Publication Title

Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE38678
Cancer-Associated Fibroblasts Support Lung Cancer Stemness through Paracrine IGF-II/IGF1R/Nanog Signaling
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The CLS1/CAF co-culture maintained the cancer stemness. This cancer stemness was lost when the CAF feeder cells were removed during passaging.

Publication Title

Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact