refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 442 results
Sort by

Filters

Technology

Platform

accession-icon GSE37302
Lenalidomide and Pomalidomide inhibit Multiple Myeloma-induced osteoclast formation and RANKL/OPG ratio in myeloma microenvironment targeting the expression of adhesion molecules.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Multiple myeloma (MM)-induced osteoclast (OC) formation occurs in close contact with MM cell infiltration into the bone marrow (BM) due to the imbalance of the receptor activator of NF-kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio in favor of RANKL in the micorenvironment. Soluble factors including CCL3/MIP-1?, IL7 and IL-3 also contribute to the increased OC formation in MM.The immunomodulatory drugs (IMiDs) directly inhibit OCs, however their effect on the mechanisms involved in MM-induced OC formation are not known and have been investigated in this study. We found that both Lenalidomide (LEN) and Pomalidomide (POM), at concentration ranging reached in vivo, significantly blunted RANKL up-regulation normalizing the RANKL/OPG ratio in human BM osteoprogenitor cells (PreOBs) co-cultured with MM cells and inhibited CCL3/MIP-1? production by MM cells. The reduction of CD49d expression on MM cells, a molecule critically involved in RANKL up-regulation in the micorenvironment, accompanied this effect. Consistently the pro-osteoclastogenic property of the conditioned medium of MM cells co-cultured with PreOBs was reduced in the presence of both IMiDs. By microarray analysis we further investigated the effect of POM and LEN on the transcriptional profile of both MM cells and PreOBs. We found a significant down-regulation in MM cells, in addition to CD49d, of genes belonging to the adhesion molecules family such as ITGA8 and ICAM2 (CD102) induced by both IMiDs compounds. In conclusion our data suggest that POM and LEN inhibits MM-induced OC formation through the inhibition of RANKL/OPG ratio targeting the expression of adhesion molecules by MM cells.

Publication Title

Immunomodulatory drugs lenalidomide and pomalidomide inhibit multiple myeloma-induced osteoclast formation and the RANKL/OPG ratio in the myeloma microenvironment targeting the expression of adhesion molecules.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE41992
Bone Marrow Monocyte/Macrophage Derived Activin A Mediates the Osteoclastogenic Effects of IL-3 in Myeloma
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Myeloma bone disease is characterized by tremendous bone destruction with suppressed bone formation. IL-3 is a multifunctional cytokine that increases myeloma cell growth and osteoclast proliferation while inhibiting osteoblast differentiation. While IL-3 appears to be an attractive therapeutic target for myeloma, attempts at targeting IL-3 have been unsuccessful due to IL-3s effects on normal hematopoiesis. Thus identification of IL-3s downstream effects in MMBD is important for effective targeting of this cytokine in MM. Here we demonstrated that treatment of myeloma patient CD14+ bone marrow monocyte / macrophages with IL-3 induces high levels of Activin A (ActA), a pluripotent TGF- superfamily member that, like IL-3, modulates MMBD by enhancing osteoclastogenesis and inhibiting osteoblasts. We show that IL-3 induced osteoclastogenesis is mediated by ActA and is RANKL independent. Additionally, IL-3 induced ActA secretion is greatest early in osteoclastogenesis and ActA acts early in osteoclastogenesis. Therefore we suggest that therapies targeting ActA production should block IL-3s effects in myeloma bone disease.

Publication Title

Bone marrow monocyte-/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE27372
In vitro and in vivo evidences of osteocytes involvement in myeloma-induced osteoclast formation and bone disease
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The involvement of osteocytes in multiple myeloma (MM)-induced osteoclast formation and the occurrence of bone lesions are still unknown. Osteocytes regulate bone remodeling at least in part through the cell death and apoptosis triggering osteoclast recruitment and formation. In this study, firstly we shown that MM cells increased osteocyte death and affect their transcriptional profile evaluated by microarray analysis up-regulating osteoclastogenic cytokines as interleukin (IL)-11. Consistently we show that the conditioned media of human pre-osteocytes co-cultured with MM cells significantly increased osteoclastogenesis. To translate into a clinical perspective such in vitro evidences, we then performed histological analysis on bone biopsies obtained from MM patients, MGUS and healthy controls. We found a significant reduction in the number of viable osteocytes in MM patients as compared to controls. A significant negative correlation between the number of viable osteocytes and that of osteoclasts was also demonstrated. Moreover, as regards the skeletal involvement, we found that MM patients with bone lesions have a significant lower number of viable osteocyte than those without. Overall, our data suggest a role of osteocytic cell death in MM-induced osteoclast formation in vitro and MM bone disease in vivo in MM patients.

Publication Title

Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE77653
Cutaneous Localization In Multiple Myeloma In The Context Of Bortezomib Resistance: How Myeloma Cells Escape From The Bone Marrow To The Skin?
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A rare complication of multiple myeloma is a secondary extramedullary involvement, and the skin is one of the possible sites, due to the physiological homing of plasma cells (PCs) into the skin. The article reports a case of a relapsed refractory MM patient, who developed a cutaneous localization after 16 months from the diagnosis under Bortezomib treatment without a leukemic phase. Patient was refractory to Bortezomib. We analyzed the gene expression profiles, the immunophenotypic and immunohistochemistry profiles of MM cells across the course of the disease at the bone marrow and skin localization. Data obtained were further expanded by an immunohistochemistry analysis on selected molecules in a large cohort of MM patients with cutaneous localization. In particular we focused on the expression of chemokines and chemokine receptors involved in the PC skin homing.

Publication Title

Cutaneous localization in multiple myeloma in the context of bortezomib-based treatment: how do myeloma cells escape from the bone marrow to the skin?

Sample Metadata Fields

Sex, Age, Specimen part, Subject, Time

View Samples
accession-icon GSE70345
IL21R-expressing CD14+CD16+ monocytes expand in multiple myeloma patients leading to increased osteoclasts
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Bone marrow monocytes are primarily committed to osteoclast formation. It is, however, unknown whether potential primary alterations are specifically present in bone marrow monocytes from patients with multiple myeloma, smoldering myeloma or monoclonal gammopathy of undetermined significance. We analyzed the immunophenotypic and transcriptional profiles of bone marrow CD14+ monocytes in a cohort of patients with different types of monoclonal gammopathies to identify alterations involved in myeloma-enhanced osteoclastogenesis. The number of bone marrow CD14+CD16+ cells was higher in patients with active myeloma than in those with smoldering myeloma or monoclonal gammopathy of undetermined significance. Interestingly, sorted bone marrow CD14+CD16+ cells from myeloma patients were more pro-osteoclastogenic than CD14+CD16-cells in cultures ex vivo Moreover, transcriptional analysis demonstrated that bone marrow CD14+ cells from patients with multiple myeloma (but neither monoclonal gammopathy of undetermined significance nor smoldering myeloma) significantly upregulated genes involved in osteoclast formation, including IL21RIL21R mRNA over-expression by bone marrow CD14+ cells was independent of the presence of interleukin-21. Consistently, interleukin-21 production by T cells as well as levels of interleukin-21 in the bone marrow were not significantly different among monoclonal gammopathies. Thereafter, we showed that IL21R over-expression in CD14+ cells increased osteoclast formation. Consistently, interleukin-21 receptor signaling inhibition by Janex 1 suppressed osteoclast differentiation from bone marrow CD14+ cells of myeloma patients. Our results indicate that bone marrow monocytes from multiple myeloma patients show distinct features compared to those from patients with indolent monoclonal gammopathies, supporting the role of IL21R over-expression by bone marrow CD14+ cells in enhanced osteoclast formation.

Publication Title

<i>IL21R</i> expressing CD14<sup>+</sup>CD16<sup>+</sup> monocytes expand in multiple myeloma patients leading to increased osteoclasts.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE26712
A Gene Signature Predicting for Survival in Suboptimally Debulked Patients with Ovarian Cancer
  • organism-icon Homo sapiens
  • sample-icon 195 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To identify a prognostic gene signature accounting for the distinct clinical outcomes in ovarian cancer patients

Publication Title

A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48433
Microarray analysis of xenograft models in use at the Developmental Therapeutics Program of the National Cancer Institute (DTP-NCI)
  • organism-icon Homo sapiens
  • sample-icon 818 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Xenograft models remain a cornerstone technology in the development of anti-cancer agents. The ability of immunocompromised rodents to support the growth of human tumors provides an invaluable transition between in vitro testing and clinical trials. Therefore, approaches to improve model selection are required. In this study, cDNA microarray data was generated for a collection of xenograft models at in vivo passages 1, 4 and 10 (P1, P4 and P10) along with originating cell lines (P0). These data can be mined to determine transcript expression 1) relative to other models 2) with successive in vivo passage and 3) during the in vitro (P0) to in vivo (P1) transition.

Publication Title

Gene expression profiling of 49 human tumor xenografts from in vitro culture through multiple in vivo passages--strategies for data mining in support of therapeutic studies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49353
Evaluating cross-hybridization of murine cDNA to the Affymetrix Human Genome U133 Plus 2.0 chipset
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptomic studies of human tumor xenografts are complicated by the presence of murine cellular mRNA. As such, it is useful to know the extent to which mouse mRNA cross-hybridizes to any given array platform. In this study, murine cDNA samples from diverse sources were hybridized to Affymetrix Human Genome U133 Plus 2.0 Arrays. In this regard it is possible to identify specific probes that are potential targets of cross-species interference.

Publication Title

Gene expression profiling of 49 human tumor xenografts from in vitro culture through multiple in vivo passages--strategies for data mining in support of therapeutic studies.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE18521
A gene signature predictive for outcome in advanced ovarian cancer identifies a novel survival factor: MAGP2
  • organism-icon Homo sapiens
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2.

Sample Metadata Fields

Specimen part, Disease stage, Cell line, Treatment

View Samples
accession-icon GSE18520
Whole-genome oligonucleotide expression analysis of papillary serous ovarian adenocarcinomas
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To demonstrate the use of a whole-genome oligonucleotide array to perform expression profiling on a series of microdissected late-stage, high-grade papillary serous ovarian adenocarcinomas to establish a prognostic gene signature correlating with survival and to identify novel survival factors in ovarian cancer.

Publication Title

A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact