refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 67 results
Sort by

Filters

Technology

Platform

accession-icon SRP091955
In utero exposure to therapeutic doses of acetaminophen and ibuprofen accelerates germ cell differentiation in the mouse embryonic testis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

NSAIDs and ACE that affect prostaglandin synthesis are widely used by pregnant women. Epidemiological studies have hypothesized a potential relation of testis dysgenesis syndromes such as cryptorchidism and hypospadias to exposure to these molecules during both the first and the second trimesters of gestation. To decipher whether the embryonic gonads themselves are targets for these molecules, we analysed the impact of precocious in utero exposure to NSAIDs and ACE alone or in combination on the early development of the testis during sex determination, using therapeutic doses similar to those administrated in human medications. We found that in utero exposure to ACE, aspirin or ibuprofen affects the germ cell proliferation in embryonic testis. The whole transcriptome of 13.5 dpc (days post coïtum) treated testis suggests different mechanisms of action of these drugs and a functional interaction between both molecules used in combination, in accelerating the germ cell differentiation. We identified that ACE and ibuprofen exposure through the up-regulation of Dnmt3L expression induces advanced epigenetic reprograming of the germline and enhanced glycogen storage within the testis cords through the activation of extracellular matrix genes expression. In addition, we identified for the first time the prostaglandin production pattern in the embryonic gonad and showed that PGD2, PGE2 and PGI2 were the targets of ACE and NSAIDs drugs. These features might affect the formation and maturation of postnatal testis and secondary reproductive organs leading to male infertility in adult age. Overall design: examination of the impact of in utero exposure to NSAIDs and ACE on testis organogenesis

Publication Title

Intergenerational effects on mouse sperm quality after in utero exposure to acetaminophen and ibuprofen.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP039609
Comparison of the transcriptional profiles of male E13.5 wild type and L/H-Pgds-/- gonads
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The goals of this study are to compare transcriptome profiling of L/H-Pgds-/- gonads to that of WT (RNA-seq) Overall design: Methods: mRNA profiles of E13.5 wild-type (WT) and L- and H- prostaglandin D synthases (L/H-Pgds-/-) embryonic gonad were generated by deep sequencing, in triplicate, using Illumina HiSeq2000. qRT–PCR validation was performed using TaqMan and SYBR Green assays

Publication Title

Prostaglandin D2 acts through the Dp2 receptor to influence male germ cell differentiation in the foetal mouse testis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP148283
Total RNA-Seq of testis and ovaries of conventional raised (convR) and Germ-free (GF) female mice under ad libitum feeding regimen.
  • organism-icon Mus musculus
  • sample-icon 104 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of testis and ovaries of conventional raised (convR) and Germ-free (GF) female mice under ad libitum feeding regime.

Publication Title

The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP148287
Total RNA-Seq of primary hepatocytes treated with serum of conventionally raised (convR) and Germ-free (GF) male and female mice.
  • organism-icon Mus musculus
  • sample-icon 107 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of primary hepatocytes treated with serum of conventionally raised (convR) and Germ-free (GF) male and female mice.

Publication Title

The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP148282
Total RNA-Seq of Germ-free (GF) male mice liver injected with ghrelin.
  • organism-icon Mus musculus
  • sample-icon 92 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of Germ-free (GF) male mice liver injected with ghrelin.

Publication Title

The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP148281
Total RNA-Seq of Germ-free (GF) male mice liver injected with growth hormone.
  • organism-icon Mus musculus
  • sample-icon 84 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut microbiota and the circadian clock are both key regulators of the metabolic processes. Although recent evidence points to the impact of the circadian clock on microbiota, gut microbiota effect on diurnal host gene expression remains elusive. A transcriptome analysis of germ-free mice reveals subtle changes in circadian clock gene expression. However, a lack of microbiome leads to liver feminization and alters the expression of male-specific genes involved in lipid metabolism and xenobiotic detoxification associated with sustained activation of the Growth Hormone pathway. These results emphasize the mutual interaction of gut microbiota and its host even on unexpected functions. Overall design: Total RNA-Seq of Germ-free (GF) male mice liver injected with growth hormone.

Publication Title

The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE3249
Analysis of RPE65 loss of function in mouse retina
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To characterize gene response in RPE65-/- mouse model of Lebers congenital amaurosis during progression of the disease, we analyzed differential gene expression in retinae early in the development of the disease, namely before and at the onset of photoreceptor cell death in knock-out mice of 2, 4 and 6 months of age.

Publication Title

Biological characterization of gene response in Rpe65-/- mouse model of Leber's congenital amaurosis during progression of the disease.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE14519
Expression data from multiple myeloma cells treated with arsenic
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to examine changes in gene expression in multiple myeloma cell lines following treatment with arsenic trioxide and darinaparsin

Publication Title

Darinaparsin induces a unique cellular response and is active in an arsenic trioxide-resistant myeloma cell line.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57197
Functional roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hotspots (expression)
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Meiotic recombination is initiated by the Spo11 endonuclease, which directs DNA double strand breaks at discrete regions in the genome coined hotspots. Here we report the profiles and dynamics of histone modifications at the cores of mouse recombination hotspots in early meiotic prophase. To define the spectrum of possible regulators of histone methylation and acetylation at all stages of meiosis I, expression analyses of histone acetylases/deacetylases (HATs/HDACs) and and HMTs/HDMTs genes when comparing those expressed in spermatogonia, pre-leptotene and leptotene/zygotene versus pachytene meiotic stages.

Publication Title

Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE99941
Effects of PPARgamma-inactive Delta-2-TGZ on breast cancer cells MCF-7
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

TGZ is an agonist of the nuclear receptor PPARgamma. This synthetic compound displays anticancer effects on breast cancer cells but some of them are PPARgamma independent. Delta-2-TGZ (delta-2-troglotazone) is a PPARgamma inactive TGZ derivative possessing a double bond adjoining the thiazolidinedione ring. This compound still displays anticancer efefcts. It is an interesting tool to study the PPARgamma-independent mechanisms.

Publication Title

Pro-apoptotic effect of Δ2-TGZ in "claudin-1-low" triple-negative breast cancer cells: involvement of claudin-1.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact