refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 423 results
Sort by

Filters

Technology

Platform

accession-icon GSE79266
Gene expression in colorectal liver metastasis tissues from EPA-treated patients
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Eicosapentaenoic acid in its free fatty acid form (EPA-FFA), 2g daily, is safe and well-tolerated in patients undergoing liver resection surgery for colorectal liver metastasis.Oral EPA incorporates into colorectal liver metastasis tissue. EPA-FFA treatment is associated with reduced vascularity of liver metastases in -3 PUFA-nave patients. Preoperative (median 30 days) EPA-FFA treatment may have prolonged benefit on postoperative overall and disease-free survival.

Publication Title

Anticolorectal cancer activity of the omega-3 polyunsaturated fatty acid eicosapentaenoic acid.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE69079
Expression data of sleeping, waking, and sleep deprived adult heterozygous aldh1l1 eGFP-L10a mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.

Publication Title

Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1 - eGFP-L10a mice.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE48369
Expression data of sleeping, waking, and sleep deprived in adult heterozygous Cnp eGFP-L10a mice
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.

Publication Title

Effects of sleep and wake on oligodendrocytes and their precursors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67838
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE67826
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Treatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE50541
Experimentally identified targets of a subset of adenovirus 5-encoded miRNAs.
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Human adenovirus 5 encodes a small set of miRNAs, which are generated by DICER-mediated processing of 2 larger precursors, the so-called virus-associated RNAs I and II. To identify targets of one of the major miRNA isoforms derived from virus-associated RNAI (mivaRNAI-137), we isolated Argonaute complexes of mivaRNAI-137-transfected cells and analyzed co-purifying RNAs by microarray analysis. RNAs enriched in Argonaute complexes of mivaRNAI-137-transfected cells compared to cells transfected with a control siRNA were identified and subjected to further validation. RNAs specifically associated with Argonaute-containining complexes of adenovirus 5-infected cells were identified as well.

Publication Title

Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE35206
Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The efficacy and exceptionally good tolerance of estrogen blockade in the treatment of breast cancer is well recognized but novel agents are required, especially to take advantage of the multiple consecutive responses obtained in breast cancer progressing following previous hormone therapy, thus delaying the use of cytotoxic chemotherapy with its usually serious side effects. Acolbifene (ACOL) is a novel and unique antiestrogen completely free of estrogen-like activity in both the mammary gland and uterus while preventing bone loss. From the preclinical and clinical data so-far available, this new antiestrogen represents a unique opportunity for a highly potent and specific blockade of estrogen action in the mammary gland and uterus while exerting estrogen-like beneficial effects in other tissues (selective estrogen receptor modulator or SERM activity). In order to better understand the specificity of action of acolbifene, we have used Affymetrix GeneChips containing 45,000 probe sets to analyze 34,000 genes to determine the specificity of this compound compared to the pure antiestrogen fulvestrant, as well as the mixed antagonists/agonists tamoxifen and raloxifene to block the effect of estradiol (E2) and to induce effects of their own on gene expression in the mouse mammary gland. The genes modulated by E2 were those identified in two separate experiments and validated by quantitative real-time PCR (Q_RT-PCR). Three hours after the single subcutaneous injection of E2 (0.05 ug), the simultaneous administration of acolbifene, fulvestrant, tamoxifen and raloxifene blocked by 98%, 62%, 43% and 92% the number of E2-upregulated genes, respectively. On the other hand, 70%, 10%, 25% and 55% of the genes down-regulated by E2 were blocked by the same compounds. Acolbifene was also the compound which, when used alone, modulated the smallest number of genes also influenced by E2, namely 4%, thus possibly explaining the potent tumoricidal action of this compound in human breast cancer xenografts where 61% of tumors disappeared, thus bringing a new paradigm in the hormonal therapy of breast cancer.

Publication Title

Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE72046
Transcriptome profiles of mice intestine and liver upon infection with Salmonella typhimurium (MC71-TT and MC71-DcdtB)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Bacterial genotoxins, produced by several Gram-negative bacteria, induce DNA damage in the target cells. While the responses induced in the host cells have been extensively studied in vitro, the role of the genotoxins as effectors during the course of acute and chronic infections remains poorly characterized.To address this issue, we assessed the effects of the Salmonella enterica genotoxin, known as typhoid toxin, in in vivo models of murine chronic infections. Immunocompetent mice were chronically infected with isogenic S. enterica, serovar Typhimurium (S. Typhimurium) strains, encoding either a functional (MC71-TT) or an inactive (MC71-DcdtB) typhoid toxin.

Publication Title

The Typhoid Toxin Promotes Host Survival and the Establishment of a Persistent Asymptomatic Infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP186927
AmpliSeq transcriptome profiling of human adipose tissue progenitor cell types
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Three different progenitor cell subsets in subcutaneous and visceral adipose tissues derived from 5 obese patients were subjected to AmpliSeq transcriptome profiling. Transcriptomic profiles were analyzed to compare progenitor cell subsets and the impact of subcutaneous and visceral adipose tissue location. Overall design: Transcriptomic profiling of 3 different progenitor cell types in subcutaneous and visceral adipose tissues derived from 5 obese patients (3X2X5=30 samples).

Publication Title

Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE37012
Gene expression profiling upon knockdown of JAK1 in IM9 cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Natural Killer (NK) cells are primary effectors of innate immunity directed against transformed cells. In response, tumor cells have developed mechanisms to evade NK cell-mediated lysis but the molecular basis for target cell resistance is not well understood. In the present study, we used a lentiviral shRNA library targeting more than 1000 human genes to identify 83 genes that promote target cell resistance to human NK cells. Many of the genes identified in this genetic screen belong to common signaling pathways, however, none of these genes have previously been known to modulate susceptibility of human tumor cells to immunologic destruction. In particular, gene silencing of two members of the JAK family (JAK1 and JAK2) in a variety of tumor cell targets increased their susceptibility to NK-mediated lysis and induced increased secretion of interferon gamma (IFN-gamma by NK cells. Treatment of tumor cells with JAK inhibitors also induced increased susceptibility to NK cell activity. These findings may have important clinical implications and suggest that small molecule inhibitors of tyrosine kinases being developed as therapeutic anti-tumor agents may also have significant immunologic effects in vivo.

Publication Title

Tyrosine kinase pathways modulate tumor susceptibility to natural killer cells.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact