refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 406 results
Sort by

Filters

Technology

Platform

accession-icon GSE3057
Temporal pattern of gene expression in the late third instar larvae and prepupae of Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

This study identifies genes that alter their expression in synchrony with the late third instar and prepupal pulses of 20E.

Publication Title

The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3069
Identification of genes dependent on the Ecdysone receptor (EcR) at the onset of metamorphosis in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

This study identifies those genes that are dependent on EcR for their proper regulation at the onset of metamorphosis in Drosophila melanogaster.

Publication Title

The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3060
Identification of 20E-regulated genes in Drosophila cultured larval organs
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

To identify 20E-regulated genes, wandering third instar larvae were dissected and their organs were cultured in the presence of either no hormone, 20E alone, cycloheximide alone, or 20E plus cycloheximide for six hours.

Publication Title

The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP057134
Transcriptome analysis of thymic APC subsets, mTECs and thymic DCs in comparison to splenic DCs
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Thymic antigen-presenting cells (APCs), including thymic dendritic cells (t-DCs) and medullary thymic epithelial cells (mTECs) have been described to play a critical role in thymic Treg generation. Our findings could show that both these thymic APCs can induce a more pronounced demethylation of Foxp3 and other Treg-specific epigenetic signature genes in developing Tregs when compared to splenic DCs. In order to elucidate the unique properties of thymic APCs, gene expression profiling was performed in comparison to splenic DCs. Transcriptome analysis of thymic APCs revealed differential expression of costimulatory molecules that could be involved in stable Treg generation. Importantly, both mTEC- and t-DC- induced alloantigen-specific Tregs displayed significantly higher efficacy in prolonging skin allograft acceptance when compared to alloantigen-specific Tregs generated by splenic DCs. Overall design: Thymic APCs, including mTECs and t-DCs and splenic DCs were isolated ex vivo from thymus as CD45-EpCAM+Ly51- (mTECs) and CD45+EpCAM-CD11chiLin- (t-DCs) and from spleen as CD11chiLin- (splenic DCs) (Lin is defined as CD90, CD49b, F4/80 and CD19), respectively.

Publication Title

Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33100
HIF- and non-HIF-Regulated Hypoxic Responses Require the Estrogen-Related Receptor in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Low-oxygen tolerance is supported by an adaptive response that includes a coordinate shift in metabolism and the activation of a transcriptional program that is driven by the hypoxia-inducible factor (HIF) pathway. The precise contribution of HIF-1 in the adaptive response, however, has not been determined. Here we investigate how HIF-1 influences hypoxic adaptation throughout Drosophila development. We find that hypoxic-induced transcriptional changes are comprised of HIF-dependent and HIF-independent pathways that are distinct and separable. We show that normoxic set-points of carbohydrate metabolites are significantly altered in dHIF mutants and that these animals are unable to mobilize glycogen in hypoxia. Furthermore, we find that the estrogen-related receptor (dERR), which is a global regulator of aerobic glycolysis in larvae, is required for a competent hypoxic response. dERR binds to dHIF and participates in the HIF-dependent transcriptional program in hypoxia. In addition, dERR acts in the absence of dHIF in hypoxia and a significant portion of HIF-independent transcriptional responses can be attributed to dERR actions, including upregulation of glycolytic transcripts. These results indicate that competent hypoxic responses arise from complex interactions between HIF-dependent and -independent mechanisms, and that dERR plays a central role in both of these programs.

Publication Title

HIF- and non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila melanogaster.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33774
Expression data from gingival tissue
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The experiment aims to identify transcriptional effects differences between periimplantitis, Parodontitis and healthy gingival tissue

Publication Title

Peri-implantitis versus periodontitis: functional differences indicated by transcriptome profiling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP124495
Neonatally imprinted mesenteric lymph node stromal cell subsets induce tolerogenic dendritic cells [Tx FSC]
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut-draining mesenteric lymph nodes (mLNs) play a key role in peripheral tolerance towards food and commensal antigens by providing an optimal microenvironment for efficient de novo induction of Foxp3+ regulatory T cells (Tregs). We recently identified mLN stromal cells as critical cellular players in this process and demonstrated that their tolerogenic properties are imprinted by microbiota. Here, we show that this imprinting process already takes place in the neonatal phase and renders the mLN stromal cell compartment resistant to inflammatory perturbations later in life. Utilizing LN transplantation, RNA-seq and single-cell RNA-seq allowed identification of stably imprinted expression signatures in mLN fibroblastic stromal cells. We dissected common stromal cell subsets across gut-draining mLNs and skin-draining LNs with location-specific immunomodulatory functions, such as subset-specific expression of Aldh1a2/3. Accordingly, mLN stromal cells shaped resident dendritic cells to attain high Treg-inducing capacity in a Bmp2-dependent manner. Thus, crosstalk between mLN stromal and resident dendritic cells provides a robust feedback mechanism for the maintenance of intestinal tolerance. Overall design: Transcriptomic analysis of fibroblastic stromal cells of skin-draining and intestinal-draining lymph nodes from endogenous and transplanted lymph nodes at the popliteal fossa.

Publication Title

Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP124959
Neonatally imprinted mesenteric lymph node stromal cell subsets induce tolerogenic dendritic cells [resDCs]
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut-draining mesenteric lymph nodes (mLNs) play a key role in peripheral tolerance towards food and commensal antigens by providing an optimal microenvironment for efficient de novo induction of Foxp3+ regulatory T cells (Tregs). We recently identified mLN stromal cells as critical cellular players in this process and demonstrated that their tolerogenic properties are imprinted by microbiota. Here, we show that this imprinting process already takes place in the neonatal phase and renders the mLN stromal cell compartment resistant to inflammatory perturbations later in life. Utilizing LN transplantation, RNA-seq and single-cell RNA-seq allowed identification of stably imprinted expression signatures in mLN fibroblastic stromal cells. We dissected common stromal cell subsets across gut-draining mLNs and skin-draining LNs with location-specific immunomodulatory functions, such as subset-specific expression of Aldh1a2/3. Accordingly, mLN stromal cells shaped resident dendritic cells to attain high Treg-inducing capacity in a Bmp2-dependent manner. Thus, crosstalk between mLN stromal and resident dendritic cells provides a robust feedback mechanism for the maintenance of intestinal tolerance. Overall design: Transcriptomic analysis of resident dendritic cells of skin-draining and intestinal-draining lymph nodes from endogenous and lymph nodes transplanted to the popliteal fossa.

Publication Title

Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP150769
Neonatally imprinted mesenteric lymph node stromal cell subsets induce tolerogenic dendritic cells [migDC]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gut-draining mesenteric lymph nodes (mLNs) play a key role in peripheral tolerance towards food and commensal antigens by providing an optimal microenvironment for efficient de novo induction of Foxp3+ regulatory T cells (Tregs). We recently identified mLN stromal cells as critical cellular players in this process and demonstrated that their tolerogenic properties are imprinted by microbiota. Here, we show that this imprinting process already takes place in the neonatal phase and renders the mLN stromal cell compartment resistant to inflammatory perturbations later in life. Utilizing LN transplantation, RNA-seq and single-cell RNA-seq allowed identification of stably imprinted expression signatures in mLN fibroblastic stromal cells. We dissected common stromal cell subsets across gut-draining mLNs and skin-draining LNs with location-specific immunomodulatory functions, such as subset-specific expression of Aldh1a2/3. Accordingly, mLN stromal cells shaped resident dendritic cells to attain high Treg-inducing capacity in a Bmp2-dependent manner. Thus, crosstalk between mLN stromal and resident dendritic cells provides a robust feedback mechanism for the maintenance of intestinal tolerance. Overall design: Transcriptomic analysis of migratory dendritic cells of skin-draining and intestinal-draining lymph nodes from endogenous and lymph nodes transplanted to the popliteal fossa.

Publication Title

Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE18765
The transcriptome of prospectively isolated adult neural stem cells
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Since the discovery of adult neural stem cells, their exact identity is still under discussion. Moreover, the lack of a reproducible procedure to purify neural stem cells prospectively rather than by growing them in vitro has so far precluded their study at the transcriptome level. Here we demonstrate a novel procedure to prospectively isolate neural stem cells from the adult mouse subependymal zone on the basis of their GFAP- and prominin1-expression by fluorescence-activated cell sorting. All self-renewing, multipotent stem cells are contained in this fraction at 70% purity. The stem cell identity of these double-positive cells is further demonstrated in vivo, by using a novel split-Cre-technology for fate mapping.

Publication Title

In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact