refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1395 results
Sort by

Filters

Technology

Platform

accession-icon GSE12067
IL-3 coordination of myeloblast function by modulating mRNA stability
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The growth factor interleukin-3 (IL-3) promotes the survival and growth of multipotent hematopoietic progenitors and stimulates myelopoiesis. It has also been reported to oppose terminal granulopoiesis and to support leukemic cell growth through autocrine or paracrine mechanisms. We used kinetic microarray, Northern Blotting and bioinformatics analysis of IL-3 dependent myeloblasts to determine whether IL-3 acts in part by regulating the rate of turnover of mRNA transcripts in specific functional pathways. Our results indicate that exposure of myeloblasts to IL-3 causes immediate early stabilization of hundreds of transcripts in pathways relevant to myeloblast function. Examples include transcripts associated with proliferation and leukemic transformation (pik3cd, myb, pim-1), hematopoietic development (cited2), differentiation control (cdkn1a) and RNA processing (BRF1, BRF2). A domain in the 3-utr of IL-6 that mediates IL-3 responsiveness contains AU-rich elements that bind proteins known to modulate mRNA stability, however a known destabilizing protein (AUF1) is shown not to mediate degradation in the absence of IL-3. These findings support a model of IL-3 action through mRNA stability control and suggest that aberrant stabilization of this network of transcripts could contribute to growth patterns observed in leukemia.

Publication Title

IL-3 and oncogenic Abl regulate the myeloblast transcriptome by altering mRNA stability.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51581
Gene expression profile of E. coli MG1655 cells grown at different growth rates in mixed substrates culture
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

E. coli MG155 cells were grown at different grwoth rates in mixed substrate culture. To facilitate different metaoblic status, cells adjust substrate consumption behavior which must be reflected in the gene expression profiles of metablism network. The metabolism network including the substrate transporter systems is our study focus.

Publication Title

Carbon catabolite repression correlates with the maintenance of near invariant molecular crowding in proliferating E. coli cells.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP102528
Epigenetic and transcriptional analysis of mesoderm progenitor cells identifies HOPX as a novel regulator of hemogenic endothelium
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

We analyzed chromatin dynamics and transcriptional activity of human embryonic stem cell (hESC)-derived cardiac progenitor cells (CPCs) and KDR+/CD34+ endothelial cells generated from cardiogenic or hemogenic mesoderm. Using an unbiased algorithm to hierarchically rank genes modulated at the level of chromatin and transcription, we identified novel candidate regulators of mesodermal lineage determination. HOPX, a non-DNA binding homeodomain protein, was identified as a candidate regulator of blood-forming endothelial cells. We used HOPX reporter and knockout hESCs, as well as hopx loss of function studies in zebrafish, to show the requirement of HOPX in vivo and in vitro in hemato-endothelial lineage specification. Loss of HOPX does not impact endothelial fate specification but markedly reduces primitive hematopoiesis acting at least in part through suppression of Wnt/ß-catenin signaling. Single cell RNA-seq data during mouse hematopoietic development in vivo confirm a role for HOPX in hematopoietic fate. Taken together, we show that HOPX is a novel regulator of hemato-endothelial fate specification in vitro and in vivo that functionally regulates Wnt signaling to modulate primitive hematopoiesis. Overall design: 2 biological replicates were isolated from cardiac progenitor cells (CPCs) and endothelial populations derived from cardiogenic mesoderm (C-ECs) and hemogenic mesoderm (H-ECs). RNA-seq and ChIP-seq (H3K4me3 and H3K27me3) was performed for each replicate.

Publication Title

Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP098205
Noncoding deletions reveal a gene that is critical for intestinal function
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Large-scale genome sequencing is poised to provide a substantial increase in the rate of discovery of disease-associated mutations, but the functional interpretation of such mutations remains challenging. Here we show that deletions of a sequence on human chromosome 16 that we term the intestine-critical region (ICR) cause intractable congenital diarrhoea in infants. Reporter assays in transgenic mice show that the ICR contains a regulatory sequence that activates transcription during the development of the gastrointestinal system. Targeted deletion of the ICR in mice caused symptoms that recapitulated the human condition. Transcriptome analysis revealed that an unannotated open reading frame (Percc1) flanks the regulatory sequence, and the expression of this gene was lost in the developing gut of mice that lacked the ICR. Percc1 knockout mice displayed phenotypes similar to those observed on ICR deletion in mice and patients, whereas an ICR-driven Percc1 transgene was sufficient to rescue the phenotypes found in mice that lacked the ICR. Together, our results identify a gene that is critical for intestinal function and underscore the need for targeted in vivo studies to interpret the growing number of clinical genetic findings that do not affect known protein-coding genes. Overall design: Total RNA-seq from dissected regions of the digestive tract, from wild-type and percc1-/- mice.

Publication Title

Noncoding deletions reveal a gene that is critical for intestinal function.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE24259
Expression data for PAR-1-positive and -negative melanoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PAR-1 is known to be involved in the transition from non-metastatic to metastatic melanoma. We sought to determine the downstream target genes regulated by PAR-1 to determine how PAR-1 is contributing to the metastatic melanoma phenotype.

Publication Title

Protease activated receptor-1 inhibits the Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP113020
Neoplastic pancreas cells enter a quasi-mesenchymal state with increased oncogenic potential following transient TGF-ß exposure
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease and a major health problem in the United States. While the cytokine TGF-ß has been implicated in PDAC development, it can exert bot pro- and anti-tumorigenic effects that are highly context dependent and incompletely understood. To better characterize the responses of neoplastic pancreas cells to TGF-ß, three-dimensional (3D) cultures of KrasG12D-expressing mouse pancreatic epithelial cells were employed. While active exposure to exogenous TGF-ß caused the KrasG12D cells to growth arrest, its subsequent removal allowed the cells to enter a hyper-proliferative, quasi-mesenchymal (QM) and progenitor-like state. This transition was highly stable and maintained by autocrine TGF-ß signaling. Transient pulses of TGF-ß have been observed during pancreatitis, a major risk factor for PDAC, and may therefore serve to convert pre-existing KrasG12D-expressing cells into QM cells. While untreated KrasG12D cells formed simple cysts in vivo, QM cells formed ductal structures resembling human PanINs. Furthermore, markers of the QM state are expressed in human PDAC and are associated with worse outcomes. These data suggest that the QM state plays a role in PDAC development and may selectively contribute to more aggressive PDAC subtypes. This work therefore provides novel molecular insights into both PDAC development and the complex role of TGF-ß in tumorigenesis. Overall design: Three technical replicates per experimental group from one isolate were analyzed by RNA sequencing

Publication Title

Pre-neoplastic pancreas cells enter a partially mesenchymal state following transient TGF-β exposure.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE107088
Edited miR-378a-3p target genes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Wild-type (WT) miR-378a-3p or edited miR-378a-3p were expressed in SB2 KD-ADAR1 cells to identify the genes regulated by edited miR-378a-3p vs WT miR-378a-3p. PARVA was one of the genes identified to be regulated by edited miR-378a-3p. We demonstrate that this regulation of PARVA is lost in highly metastatic melanoma cells.

Publication Title

A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE36036
Niche modulated versus niche modulating genes in multiple myeloma
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Background. Multiple myeloma (MM) cells depend on the bone marrow (BM) niche for growth and survival. However, the tumor genes regulated by the niche are largely unknown.

Publication Title

Niche-modulated and niche-modulating genes in bone marrow cells.

Sample Metadata Fields

Disease, Disease stage, Time

View Samples
accession-icon GSE14500
Expression Profiling of HL-60 Cells Stimulated by ATRA and DMSO
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Stimulation of HL60 progenitor cells with either DMSO (1.25% v/v) or atRA (10E-07M) resulted in their differentiation into neutrophils within six days. Gene expression profiles across 12 600 genes were measured for the differentiation processes induced by DMSO and atRA at 0, 2, 4, 8, 12, and 18 h and daily thereafter until day 7 using oligonucleotide DNA microarrays.

Publication Title

Cell fates as high-dimensional attractor states of a complex gene regulatory network.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39184
Contact versus contactless signatures in leukemia
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Gene expression profile (GEP) was analyzed in bone marrow (BM) samples from patients with leukemia or leukemic phase of lymphoma at different time points following aspiration. Among numerous changes in GEP evolved over time a discrete subset of > 60 genes exhibited prompt and sustained switch in expression consistently. Similar results were discovered recently in BM samples from patients with multiple myeloma (GSE36036). GEP was also examined in peripheral blood as well as in BM samples depleted of red blood cells (=WBC) and in cultured cells from some of the patients.

Publication Title

Niche-modulated and niche-modulating genes in bone marrow cells.

Sample Metadata Fields

Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact