refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 569 results
Sort by

Filters

Technology

Platform

accession-icon GSE18773
CAL-51 breast cancer side population cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human solid tumors contain rare cancer side population (SP) cells, which expel the fluorescencent dye H33342 and display cancer stem cell characteristics. Transcriptional profiling of cancer SP cells isolated by H33342 fluorescence analysis is a newly emerging approach to discover cancer stem cell markers and aberrant differentiation pathways. Using Affymetrix expression microarrays this study investigated differential gene expression between SP and non-SP (NSP) cells isolated from the CAL-51 human mammary carcinoma cell line.

Publication Title

Down-regulation of the fetal stem cell factor SOX17 by H33342: a mechanism responsible for differential gene expression in breast cancer side population cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26403
Gene therapy of Mpl -/- mouse LSK cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Comparison of Mpl-/- mouse LSK cells, either treated with control (GFP) or Mpl lentivirus. Lineage negative bone marrow cells were isolated and transduced and transplanted into Mpl-/- recipient mice. After transplantation and follow up mice were sacrificed and LSK (lineage negative, Sca-1 positive, cKit positive) cells were isolated by FACS. RNA was isolated using RNeasy Micro Kit (Qiagen GmbH, Hilden, Germany) and RNA was amplified for microarray hybridization using the Nugen Ovation system (Nugen Technologies, AC Bemmel, Netherlands). The resulting material was hybridized to Affymetrix Mouse 430 2.0 arrays. RMA normalization and summarization was performed in R 2.10 using Bioconductor packages. The aim was to show the normalization of Mpl associated gene expression.

Publication Title

Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34514
Differential RNAs in the sperm cells of asthenozoospermic patients
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Alterations in the presence of sperm RNAs have been identified using microarrays in teratozoospermic (abnormal morphology) or other types of infertile patients. However, so far no studies had been reported on the sperm RNA content using microarrays in asthenozoospermic patients (low motility).

Publication Title

Differential RNAs in the sperm cells of asthenozoospermic patients.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP042093
TAF4 promotes pre-initiation complex formation and HNF4A occupancy of regulatory elements required to activation post-natal gene expression programme in hepatocytes (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The nuclear receptor HNF4A regulates embryonic and post-natal hepatocyte gene expression. Using hepatocyte-specific inactivation in mice, we show that the TAF4 subunit of TFIID acts as a cofactor for HNF4A in vivo and that HNF4A interacts directly with the TAF4-TAF12 heterodimer in vitro. In vivo, TAF4 is required to maintain HNF4A-directed embryonic gene expression at post-natal stages and for HNF4A-directed activation of post-natal gene expression. TAF4 promotes HNF4A occupancy of functional cis-regulatory elements located adjacent to the transcription start sites of post-natal expressed genes and for pre-initiation complex formation required for their expression. Promoter-proximal HNF4A-TFIID interactions are therefore required for pre-initiation complex formation and stable HNF4A occupancy of regulatory elements as two concomitant mutually dependent processes. Overall design: RNA profiles in wild-type and Taf4-/- livers by deep sequencing

Publication Title

TAF4, a subunit of transcription factor II D, directs promoter occupancy of nuclear receptor HNF4A during post-natal hepatocyte differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22824
Gene expression in retina and LGN of wild type and Chrnb2-/- mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mice lacking the beta 2 subunit (Chrnb2) of the neuronal nicotinic acetylcholine receptor display altered retinal waves and disorganized projections of the retinal ganglion cells to the lateral geniculate nucleus (LGN). mRNA populations from retinas and LGN from Chrnb2-/-and wild type (C57BL/6J) mice were compared at 4 days postnatal, when RGC segregation to the LGN begins in WT mice. Retinal mRNAs were also compared at adulthood.

Publication Title

Mouse mutants for the nicotinic acetylcholine receptor ß2 subunit display changes in cell adhesion and neurodegeneration response genes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE146093
Epigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman), Infinium MethylationEPIC

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE130928
Alveolar macrophage immunometabolism and lung function impairment in smoking and chronic obstructive pulmonary disease
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Metabolic plasticity involving shifts between mitochondrial respiration and glycolysis is emerging as a crucial component of efficient innate immune cell responses. Alveolar macrophages (AMs), the most abundant antigen-presenting cells in the lung, are dramatically increased in the lungs of patients with chronic obstructive pulmonary disease (COPD). However, COPD AMs exhibit dysfunctional responses to infection with lower phagocytic ability and impairment of mitochondrial reactive oxygen species (ROS) generation. Little is known about the mitochondrial function or respiration of these cells and whether alterations in their mitochondrial or glycolytic activities may contribute to the pathogenesis of COPD.

Publication Title

Alveolar Macrophage Immunometabolism and Lung Function Impairment in Smoking and Chronic Obstructive Pulmonary Disease.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
accession-icon GSE146088
Epigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Epigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells reveals long range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci range dysregulation of key inflammatory pathways mediated by disease-associated

Publication Title

Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE48964
Expression data from Adipose Stem Cells (ASC) from morbidly obese and non-obese individuals
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The adipose tissue is an endocrine regulator and a risk factor for atherosclerosis and cardiovascular disease when by excessive accumulation induces obesity. Although the adipose tissue is also a reservoir for stem cells (ASC) their function and stemcellness has been questioned. Our aim was to investigate the mechanisms by which obesity affects subcutaneous white adipose tissue (WAT) stem cells.

Publication Title

Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52012
Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition
  • organism-icon Sus scrofa
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

In pigs, adipose tissue is one of the principal organs involved in the regulation of lipid metabolism. It is particulary involved in the overall fatty acid synthesis with consequences in other lipid-target organs such as muscles and the liver. With this in mind, we have used massive, parallel high-throughput sequencing technologies to characterize the porcine adipose tissue transcriptome architecture in six Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition (three per group). High-throughput RNA sequencing was used to generate a whole characterization of adipose tissue (backfat) transcriptome. A total of 4,130 putative unannotated protein-coding sequences were identified in the 20% of reads which mapped in intergenic regions. Furthermore, 36% of the unmapped reads were represented by interspersed repeats, SINEs being the most abundant elements. Differential expression analyses identified 396 candidate genes among divergent animals for intramuscular fatty acid composition. Sixty-two percent of these genes (247/396) presented higher expression in the group of pigs with higher content of intramuscular SFA and MUFA, while the remaining 149 showed higher expression in the group with higher content of PUFA. Pathway analysis related these genes to biological functions and canonical pathways controlling lipid and fatty acid metabolisms. In concordance with the phenotypic classification of animals, the major metabolic pathway differentially modulated between groups was de novo lipogenesis, the group with more PUFA being the one that showed lower expression of lipogenic genes. These results will help in the identification of genetic variants at loci that affect fatty acid composition traits. The implications of these results range from the improvement of porcine meat quality traits to the application of the pig as an animal model of human metabolic diseases.

Publication Title

Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact