refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE56257
High-fat diet-mediated dysbiosis promotes intestinal carcinogenesis independent of obesity
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Several aspects common to a Western lifestyle, including obesity and decreased physical activity, are known risks for gastrointestinal cancers. There is an increasing amount of evidence suggesting that diet profoundly affects the composition of the intestinal microbiota. Moreover, there is now unequivocal evidence linking a dysbiotic gut to cancer development. Yet, the mechanisms through which high-fat diet (HFD)-mediated changes in the microbial community impact the severity of tumorigenesis in the gut, remain to be determined.

Publication Title

High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon SRP102183
Analysis of WT and IRF1-deficient Th9 cell transcriptomes in the presence of IFN-gamma
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Goal of this study was to compare transcriptional changes in IFN-gamma-treated WT compared to IRF1-deficient Th9 cells Overall design: mRNA profiles of Th9 cells cultured for 2 days in the presence of IFN-gamma in vitro were generated by deep sequencing using Illumina HiSeq2000

Publication Title

Reciprocal regulation of the Il9 locus by counteracting activities of transcription factors IRF1 and IRF4.

Sample Metadata Fields

Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact