refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 170 results
Sort by

Filters

Technology

Platform

accession-icon GSE81726
Molecular characterization of the genital organizer: Gene expression profile of the mouse urethral plate epithelium (GUDMAP Series ID: 51)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Lower urinary tract malformations are among the most common congenital anomalies in humans. The urethral plate epithelium is an endodermal signaling region that plays an essential role in external genital development; however, little is known about the molecular identity of this cell population or the genes that regulate its activity. We aim to characterize differences in gene expression between the urethral plate epithelium and surrounding mouse genital tubercles during a crucial developmental period.

Publication Title

Molecular Characterization of the Genital Organizer: Gene Expression Profile of the Mouse Urethral Plate Epithelium.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE36674
Expression data for mouse hypothalamus
  • organism-icon Mus musculus
  • sample-icon 89 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Strain differences in gene expression in the hypothalamus of BXD recombinant inbred mice

Publication Title

Sex-specific modulation of gene expression networks in murine hypothalamus.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE1491
Identification of Inhibitors of Auxin Transcriptional Activation via Chemical Genetics in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Approximately 2.5 mg dry Col-0 seedlings were surface sterilized and stratified for 2 days at 4degreesC in liquid media containing 1.5% sucrose (w/v) before being transferred to light with constant shaking at 100 rpm on an orbital shaker. After 7 days, the seedling clusters were subjected to the treatments for 1 hr followed by total RNA isolation using the RNAqueous kit (Ambion). Each treatment was performed in triplicate or quadruplicate. All labeling (Enzo) and hybridization (Affymetrix) procedures were performed as directed by the manufacturers. Raw probe intensities output by the Affymetrix MAS software were processed using the RMA algorithm to obtain an expression measure for each gene on each array.

Publication Title

Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41543
DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific and other intestinal epithelial functions
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific and other intestinal epithelial functions.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31626
Expression data of Dnmt1 haploinsufficient leukemia stem cells and bulk leukemia
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Leukemia stem cells (LSCs) are an attractive target in treatment of many types of blood cancers. There remains an incomplete understanding of the epigenetic mechanisms driving LSC formation and maintenance, and how this compares to the epigenetic regulation of normal hematopoietic stem cells (HSCs).

Publication Title

Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41541
Expression data from mouse proximal intestinal epithelial Lgr5(hi) stem cells and differentiated villus cells (enterocytes from Atoh1 conditional knockout)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We used microarrays to detail the differentail gene expression between intestinal Lgr5(hi) stem cells and differentiated cells

Publication Title

DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific and other intestinal epithelial functions.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49248
KrasG12D partially compensates for the loss of beta-catenin in MLL-AF9 AML
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in MLL-AF9 AML.

Publication Title

KRas(G12D)-evoked leukemogenesis does not require β-catenin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14320
Basal and kainate-induced gene expression in A-CREB mouse hippocampi
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The cAMP responsive element binding protein (CREB) pathway has been involved in two major cascades of gene expression regulating neuronal function. The first one presents CREB as a critical component of the molecular switch that control longlasting forms of neuronal plasticity and learning. The second one relates CREB to neuronal survival and protection. To investigate the role of CREB-dependent gene expression in neuronal plasticity and survival in vivo, we generated bitransgenic mice expressing A-CREB, an artificial peptide with strong and broad inhibitory effect on the CREB family, in forebrain neurons in a regulatable manner. The expression of ACREB in hippocampal neurons impaired L-LTP, reduced intrinsic excitability and the susceptibility to induced seizures, and altered both basal and activity-driven gene expression. In the long-term, the chronic inhibition of CREB function caused severe loss of neurons in the CA1 subfield as well as in other brain regions. Our experiments confirmed previous findings in CREB deficient mutants and revealed new aspects of CREB-dependent gene expression in the hippocampus supporting a dual role for CREB-dependent gene expression regulating intrinsic and synaptic plasticity and promoting neuronal survival. manufacturer's protocol.

Publication Title

Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration.

Sample Metadata Fields

Age, Treatment

View Samples
accession-icon SRP110478
mRNA sequencing of wild type Columbia and serrate-1 globular stage embryos of Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Wild type Columbia and serrate-1 globular stage embryos were sequenced in order to profile miRNAs which are expressed in embryogenesis in Arabidopsis thaliana Overall design: Two biological replicates, two conditions

Publication Title

Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP015689
A user-friendly chromatographic method to purify small regulatory RNAs
  • organism-icon Drosophila melanogaster
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

The discovery of the small regulatory RNA populations has changed our vision of cellular regulations. Indeed, loaded on Argonaute proteins they formed ribonucleoprotein complexes that target complementary sequences and achieved widespread silencing mechanisms conserved in most eukaryotes. The recent development of deep sequencing approaches highly contributed to their detection. Small RNA isolation form cells and/or tissues remains a crucial stage to generate robust and relevant sequencing data. In 2006, a novel strategy based on anion-exchange chromatography has been purposed as an alternative to the standard size-isolation purification procedure. However, the eventual biases of such a method have been poorly investigated. Moreover, this strategy not only relies on advanced technical skills and expensive material but is time consuming and requires an elevated starting biological material amount. Using bioinformatic comparative analysis of six independent small RNA-sequencing libraries of Drosophila ovaries, we here demonstrate that anion-exchange chromatography purification prior to small RNA extraction unbiasedly enriches datasets in bona fide reads (small regulatory RNA reads) and depletes endogenous contaminants (ribosomal RNAs and degradation products). The resulting increase of sequencing depth provides a major benefit to study rare populations. We then developed a fast and basic manual procedure to purify loaded small non coding RNAs using anion-exchange chromatography at the bench. We validated the efficiency of this new method and used this strategy to purify small RNAs from various tissues and organisms. We moreover determined that our manual purification increases the output of the previously described anion-exchange chromatography procedure. Overall design: Comparison of small regulatory RNA populations obtained after three different small RNA purification procedures

Publication Title

A user-friendly chromatographic method to purify small regulatory RNAs.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact