refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 233 results
Sort by

Filters

Technology

Platform

accession-icon GSE83159
Epigenetic regulation of the transcriptional program in memory and terminally differentiated CD8+ T cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenetic Networks Regulate the Transcriptional Program in Memory and Terminally Differentiated CD8+ T Cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE83157
Epigenetic regulation of the transcriptional program in memory and terminally differentiated CD8+ T cells [HCAFIS_07_Gene_Expression]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Epigenetic mechanisms play a critical role during differentiation of T cells by contributing to the formation of stable and heritable transcriptional patterns. To further study the mechanisms of memory maintenance in CD8+ T cells, we performed genome-wide analysis of DNA methylation, histone marking (H3K9Ac and H3K9me3) and gene expression profiles in naive, effector memory (EM) and terminally differentiated memory (TEMRA) cells. Our results indicate that DNA demethylation and histone acetylation are coordinated to generate the transcriptional program associated with memory cells. Conversely, EM and TEMRA cells share a very similar epigenetic landscape. Nonetheless, the TEMRA transcriptional program predicts an innate immunity phenotype associated with genes never reported in these cells, including several mediators of NK cell activation (VAV3 and LYN) and a large array of NK receptors (KIR2DL3, KIR2DL4, KIR2DL1, KIR3DL1, KIR2DS5, etc.). In addition, we identified up to 161 genes that encode transcriptional regulators, some of unknown function in CD8+ T cells, that were differentially expressed in the course of differentiation. Overall, these results provide new insights into the regulatory networks involved in memory CD8+ T cell maintenance and T cell terminal differentiation.

Publication Title

Epigenetic Networks Regulate the Transcriptional Program in Memory and Terminally Differentiated CD8+ T Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE83158
Epigenetic regulation of the transcriptional program in memory and terminally differentiated CD8+ T cells [HCAFIS_12_Gene_Expression]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Epigenetic mechanisms play a critical role during differentiation of T cells by contributing to the formation of stable and heritable transcriptional patterns. To further study the mechanisms of memory maintenance in CD8+ T cells, we performed genome-wide analysis of DNA methylation, histone marking (H3K9Ac and H3K9me3) and gene expression profiles in naive, effector memory (EM) and terminally differentiated memory (TEMRA) cells. Our results indicate that DNA demethylation and histone acetylation are coordinated to generate the transcriptional program associated with memory cells. Conversely, EM and TEMRA cells share a very similar epigenetic landscape. Nonetheless, the TEMRA transcriptional program predicts an innate immunity phenotype associated with genes never reported in these cells, including several mediators of NK cell activation (VAV3 and LYN) and a large array of NK receptors (KIR2DL3, KIR2DL4, KIR2DL1, KIR3DL1, KIR2DS5, etc.). In addition, we identified up to 161 genes that encode transcriptional regulators, some of unknown function in CD8+ T cells, that were differentially expressed in the course of differentiation. Overall, these results provide new insights into the regulatory networks involved in memory CD8+ T cell maintenance and T cell terminal differentiation.

Publication Title

Epigenetic Networks Regulate the Transcriptional Program in Memory and Terminally Differentiated CD8+ T Cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE37329
Genome-wide gene expression during osteogenic and myogenic differentiation from adipose- derived stem cells.
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

In the current study, we have performed a gene expression analysis of well characterized and defined populations of human adipose-derived stem cells (hASCs) before and after in vitro induction of osteogenic and myogenic differentiation that allows identifying DNA methylation- regulated differentiation genes. We have also address the extent of the epigenetic programming of hASCs- derived differentiated cells by comparing the expression profiling of these cells with their somatic counterparts from primary tissues. Finally, we also compared the patterns of expression of hASCs (and their derivatives)

Publication Title

DNA methylation plasticity of human adipose-derived stem cells in lineage commitment.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35823
Expression data from Bovine leukemia virus (BLV) Tax-transfected HeLa cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Bovine leukemia virus (BLV) Tax is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G) or reduced (TaxS240P) transactivation effects on BLV replication and propagation. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach.

Publication Title

Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE34750
Expression data from Human Tax transfected HeLa cell
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Human T cell leukemia virus type 1 (HTLV-1) Tax is potent activator of viral and cellular gene expression that interacts with a number of cellular proteins. In this study, a large-scale host cell signaling events related to cellular proliferation were used to identify genes involved in Tax-mediated cell signaling events related to cellular proliferation and apoptosis.

Publication Title

Visualizing spatiotemporal dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1 Tax and insights into gene expression changes using microarray-based gene expression analysis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE87793
EMT blockage is required for mouse nave pluripotent stem cell derivation
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Pluripotency is the differentiation capacity of particular cells exhibited in the early embryo in vivo and embryonic stem (ES) cells have been shown to originate from the inner cell mass (ICM) of an E3.5 blastocyst. Although the potential for ES cells to differentiate into the three germ layers is equated to ICM cells, they differ in the ability to maintain the capacity for self-renewal. Despite several studies on the maintenance of ES cells in the ground state of pluripotency, the precise mechanism of conversion from the ICM to the ES cell remains unclear. Here , we have examined the cell characteristics and expression profile within the intermediate stages of ES cell derivation from the ICM. Gene clustering and ontology (GO) analyses showed a significant change in the expression of epigenetic modifiers and DNA methylation-related genes in the intermediate stages. We have proposed that an epithelial-to-mesenchymal transition (EMT) blockage is required during derivation of mouse ES cells from E3.5 blastocysts. This study suggests a novel mechanistic insight into ES cell derivation and provides a time-course transcriptome profiling resource for the dissection of gene regulatory networks that underlie the transition from ICM to ES cells.

Publication Title

Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38215
Expression analysis of control and low protein fed mouse offspring subsequently treated with multiple low doses of STZ
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Low protein (LP) during gestation leads to low birth weight and poor fetal growth, with altered islet development and glucose intolerance in adulthood. Additionally, LP offspring fail to regenerate their -cells following depletion with streptozotocin (STZ), in contrast to control-fed offspring that are capable of -cell regeneration.

Publication Title

Cellular mechanisms underlying failed beta cell regeneration in offspring of protein-restricted pregnant mice.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon SRP112551
Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon

Description

Brain gene expression profiling studies of suicide and depression using oligonucleotide microarrays have often failed to distinguish these two phenotypes. Moreover, next generation sequencing approaches are more accurate in quantifying gene expression and can detect alternative splicing. Using RNA-seq, we examined whole-exome gene and exon expression in non-psychiatric controls (CON, N=29), DSM-IV major depressive disorder suicides (MDD-S, N=21) and MDD non-suicides (MDD, N=9) in the dorsal lateral prefrontal cortex (Brodmann Area 9) of sudden death medication-free individuals post mortem. Using small RNA-seq, we also examined miRNA expression (nine samples per group). DeSeq2 identified 35 genes differentially expressed between groups and surviving adjustment for false discovery rate (adjusted P<0.1). In depression, altered genes include humanin-like-8 (MTRNRL8), interleukin-8 (IL8), and serpin peptidase inhibitor, clade H (SERPINH1) and chemokine ligand 4 (CCL4), while exploratory gene ontology (GO) analyses revealed lower expression of immune-related pathways such as chemokine receptor activity, chemotaxis and cytokine biosynthesis, and angiogenesis and vascular development in (adjusted P<0.1). Hypothesis-driven GO analysis suggests lower expression of genes involved in oligodendrocyte differentiation, regulation of glutamatergic neurotransmission, and oxytocin receptor expression in both suicide and depression, and provisional evidence for altered DNA-dependent ATPase expression in suicide only. DEXSEq analysis identified differential exon usage in ATPase, class II, type 9B (adjusted P<0.1) in depression. Differences in miRNA expression or structural gene variants were not detected. Results lend further support for models in which deficits in microglial, endothelial (blood-brain barrier), ATPase activity and astrocytic cell functions contribute to MDD and suicide, and identify putative pathways and mechanisms for further study in these disorder Overall design: We examined whole-exome gene and exon expression in non-psychiatric controls (CON, N=29), DSM-IV major depressive disorder suicides (MDD-S, N=21) and MDD non-suicides (MDD, N=9) in the dorsal lateral prefrontal cortex (Brodmann Area 9) of sudden death medication-free individuals post mortem. Using small RNA-seq, we also examined miRNA expression (nine samples per group).

Publication Title

Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: evidence for altered glial, endothelial and ATPase activity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45702
DNA methylation status of myelinating Schwann cells during development and in diabetic neuropathy
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

S-adenosylmethionine levels regulate the schwann cell DNA methylome.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact