refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 125 results
Sort by

Filters

Technology

Platform

accession-icon GSE38780
Expression data of normal human extraocular muscle and strabismic human extraocular muscle
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human strabismic extraocular muscles (EOMs) differ from normal EOMs in structural and functional properties, but the gene expression profile of these two types of human EOM has not been examined. Differences in gene expression may inform about causes and effects of the strabismic condition in humans. Our samples are from human strabismic patients undergoing corrective surgery, and from human organ donors with no history of EOM disease.

Publication Title

Differences in gene expression between strabismic and normal human extraocular muscles.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41280
Cyclophilin D extramitochondrial signaling controls cell cycle progression and chemokine-directed cell motility.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Mitochondria control bioenergetics and cell fate decisions, but whether they also participate in extra-organelle signaling is not understood. Here, we show that interference with cyclophilin D (CypD), a mitochondrial matrix protein and apoptosis regulator, causes accelerated cell proliferation and enhanced cell migration and invasion. These responses are associated with global transcriptional changes in CypD-/- cells, predominantly affecting chemokines and their receptors, and resulting in increased activating phosphorylation of Signal Transduction and Activator of Transcription 3 (STAT3). In turn, STAT3 signaling promotes increased proliferation of CypD-/- cells via accelerated S-phase entry and supports Cxcl12-directed paracrine cell motility. Therefore, mitochondria-to-nuclei transcriptional signaling globally affects cell division and motility. As immunosuppressive therapies often target CypD, this pathway may predispose the tissue microenvironment of these patients to oncogenic transformation.

Publication Title

Cyclophilin D extramitochondrial signaling controls cell cycle progression and chemokine-directed cell motility.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60179
Role of Ror2 in primordial germ cell migration
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Primordial germ cells (PGCs), the embryonic precursors of eggs and sperm, are a unique model for identifying and studying regulatory mechanisms in singly migrating cells. From their time of specification to eventual colonization of the gonad, mouse PGCs traverse through and interact with many different cell types, including epithelial cells and mesenchymal tissues. Work in drosophila and zebrafish have identified many genes and signaling pathways involved in PGC migration, but little is known about this process in mammals.

Publication Title

Discrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43536
Effects of overexpressed Atoh8 on the transcriptional profile of mouse ductal cells mPAC in the absence or presence of co-expressed Neurogenin3
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The basic helix-loop-helix (bHLH) transcription factors of the Drosophilas atonal-related superfamily Neurogenin3 (Neurog3) and NeuroD1 promote endocrine differentiation in the gastrointestinal tract. Atonal Homolog 8 (Atoh8/Math6) is a newly identified member of the atonal-related family whose expression is induced by Neurog3 and NeuroD1 in cell culture, indicating a possible role for this gene in the endocrine differentiation program downstream of these two pro-endocrine factors. Intriguingly, available experimental evidence based on a reduced number of genes suggests that Atoh8 may negatively regulate Neurog3-targeting events. In this study, we have analyzed global changes in gene expression profiles upon exogenous expression of Atoh8 alone or in combination with Neurog3 in mouse pancreatic duct (mPAC) cells. These cells activate neuroendocrine-specific gene expression in response to Neurog3 and NeuroD1 and thus serve as an optimal model to evaluate the proendocrine activity of Atoh8. We have compared transcriptional profiles between mPAC cells treated with a recombinant adenovirus expressing Atoh8 (Ad-Atoh8) or a control adenovirus encoding B-galactosidase (Ad-Bgal), and between cells treated with Ad-Neurog3+Ad-Bgal or cells treated with Ad-Neurog3+Ad-Atoh8. The results obtained show that Atoh8 exhibits a very modest transcriptional activity in these cells thus confirming that Atoh8 does not function as a proendocrine gene. Furthermore, our data also confirm the ability of Atoh8 to block Neurog3-dependent transcriptional activation events. However, since repression is only seen for a small subset of Neurog3 gene targets, we discard a general role of Atoh8 as a negative regulator of Neurog3 pro-endocrine activity.

Publication Title

Characterization of the transcriptional activity of the basic helix-loop-helix (bHLH) transcription factor Atoh8.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE74513
The human amniotic fluid stem cell secretome counteracts doxorubicin-induced cardiotoxicity
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The anthracycline, doxorubicin (Dox), is widely used in oncology, but it may it may cause a cardiomyopathy which has dismal prognosis and cannot be effectively prevented. The secretome of multipotent human amniotic fluid-derived stem cells (hAFS) has previously been demonstrated to reduce ischemic cardiac damage. Here, it is shown that the hAFS conditioned medium (hAFS-CM) antagonizes senescence and apoptosis of cardiomyocytes and cardiac progenitor cells, two major features of Dox cardiotoxicity. Mechanistic studies with primary mouse neonatal cardiomyocytes reveal that hAFS-CM inhibition of Dox-elicited senescence and apoptosis is paralleled by decreased DNA damage and is associated with nuclear translocation of NF-kB and upregulation of a set of genes controlled by NF-kB, namely Il6 and Cxcl1, which promote cardiomyocyte survival, and Cyp1b1 and Abcb1, which encode for proteins involved in Dox metabolism and efflux, respectively. The PI3K/Akt signaling cascade, upstream of NF-kB, is potently activated by the hAFS-CM and pre-treatment with a PI3K inhibitor abrogates NF-kB accumulation into the nucleus, modulation of its target genes, and prevention of Dox-initiated senescence and apoptosis in response to the hAFS-CM. This work may lay the ground for the development of a stem cell-based paracrine therapy of chemotherapy-related cardiotoxicity.

Publication Title

The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2253
Beta cells (MIN6) treated with amylin at different times and doses and growth at different concentrations of glucose
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Murine pancreatic beta cell line MIN6 was growth at two different concentrations of glucose (22,2 and 5,5 mM of glucose), 37C, 5% CO2 and was treated at four different concentrations of human amylin (0, 1, 10 and 20 uM) during three different times (2, 12 and 24 hours)

Publication Title

Impairment of the ubiquitin-proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet amyloid polypeptide and contributes to pancreatic beta-cell apoptosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35603
Network Biology of Tumor Stem-like Cells Identified a Regulatory Role of CBX5 in Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mounting evidence points to a link between a cancer possessing stem-like properties and a worse prognosis. To understand the biology, a common approach is to integrate network biology with signal processing mechanics. That said, even with the right tools, predicting the risk for a highly susceptible target using only a handful of gene signatures remains very difficult. By compiling the expression profiles of a panel of tumor stem-like cells (TSLCs) originating in different tissues, comparing these to their parental tumor cells (PTCs) and the human embryonic stem cells (hESCs), and integrating network analysis with signaling mechanics, we propose that network topologically-weighted signaling processing measurements under tissue-specific conditions can provide scalable and predicable target identification.

Publication Title

Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11679
Gene expression changes related to postnatal handling
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Postnatal handling in rodents leads to decreased anxiety-like behavior in adulthood. We used microarrays to look at gene expression differences in the CA1 region of the hippocampus in female mice subjected to postnatal handling compared to controls.

Publication Title

Variation in the large-scale organization of gene expression levels in the hippocampus relates to stable epigenetic variability in behavior.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11680
Gene expression differences between high and low exploratory genetically identical mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Genetically identical inbred mice exhibit substantial stable individual variability in exploratory behavior. We used microarrays to look at gene expression differences in the hippocampus in female mice separated by stable differences in exploratory behavior

Publication Title

Variation in the large-scale organization of gene expression levels in the hippocampus relates to stable epigenetic variability in behavior.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15102
Targetting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or siRNA
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

CD24 is a potential oncogene reported to be overexpressed in a large variety of human malignancies. We have shown that CD24 is overexpressed in 90% of colorectal tumors at a fairly early stage in the multistep process of carcinogenesis. Anti-CD24 monoclonal antibodies (mAb) induce a significant growth inhibition in colorectal and pancreatic cancer cell lines that express the protein. This study is designed to investigate further the effects of CD24 down-regulation using mAb or small interfering RNA in vitro and in vivo. Western blot analysis showed that anti-CD24 mAb induced CD24 protein down-regulation through lysosomal degradation. mAb augmented growth inhibition in combination with five classic chemotherapies. Xenograft models in vivo showed that tumor growth was significantly reduced in mAb-treated mice. Similarly, stable growth inhibition of cancer cell lines was achieved by down-regulation of CD24 expression using short hairpin RNA (shRNA). The produced clones proliferated more slowly, reached lower saturation densities, and showed impaired motility. Most importantly, down-regulation of CD24 retarded tumorigenicity of human cancer cell lines in nude mice. Microarray analysis revealed a similar pattern of gene expression alterations when cells were subjected to anti-CD24 mAb or shRNA. Genes in the Ras pathway, mitogenactivated protein kinase, or BCL-2 family and others of oncogenic association were frequently down-regulated. As a putative new oncogene that is overexpressed in gastrointestinal malignancies early in the carcinogenesis process, CD24 is a potential target for early intervention in the prevention and treatment of cancer.

Publication Title

Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact